Physics 364 / 564

Reminder:

Lecture: Mondays only, 2-3:30

Labs: Mondays & Thursdays, 5-9pm

P369 2010-09-13 pajel pajel 1 = 0 E Ohm's Law: V=IR (physics: acceleration between Scatters) ZI = 0 into one node (conservation of charge) Kirchoff: KCL = KVL Z Z AV =0 loop (conservation of energy) (SE.de = - LE DB) Series $R, \stackrel{?}{\neq} \Delta V = IR, +IR_2 = I(R, +R_2)$ RZ Riseries = R, +Rz

 $\Sigma = \frac{\Delta V}{R_1} + \frac{\Delta V}{R_2} = \Delta V \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$ RE $1/R_{11} = 1/R_{1} + 1/R_{2}$ $\Rightarrow R_1/R_2 = \frac{R_1R_2}{R_1+R_2}$ shortcuts: R+r 2R (R>>r) R//r 2r R/R = 12 R R//2R = (2R//2R)//2R = = = R

p369, 2010-09-13, page 2) voltage dividen: See again and goin, in various forms VIA R. Vout $\frac{V_{out}}{V_{in}} = \frac{R_2}{R_1 + R_2}$

Use voltage dividers ble they are what you know so far. More complicated boxes later. ZR. ZR, ŽR3 ŻRY ZR = = box B's food black box "A Some assumption doubt R5) needed to evaluate Rin signal source V (ideal?) reeded to evaluate Vout | black box load "B" To A, B looks just like R3+(R4//R5) to 1 "We say ""input impedance" of B is R3+(R4//R5) TO B, A lody like Rth = RI//R2 to Vth = Rithe

If Rin (B) >> Rout (A) Hen Theoding " A with B does not cause A to "droop"/"sog", (Analogous (opposite) rule for current sources.) I e.g. you build amplifien to bost a voltage, don't want to lose your voltage gain the can't drive load.

in A out in Blout = Voltage dividen ZRin When circuit fragment A drives circuit fragmat B, rule of thumb: Rut(A) < Rin(B);

300K 300R 10K 105 Vout FLOK 7300r 2300K ZION .98 v.14 is Vout? (Discuss with neighbor!) What Now what if every resistor is IK? 6 $1 + (\frac{5}{3} || 1)$ 53 2/3 0.471 \sim W-L.

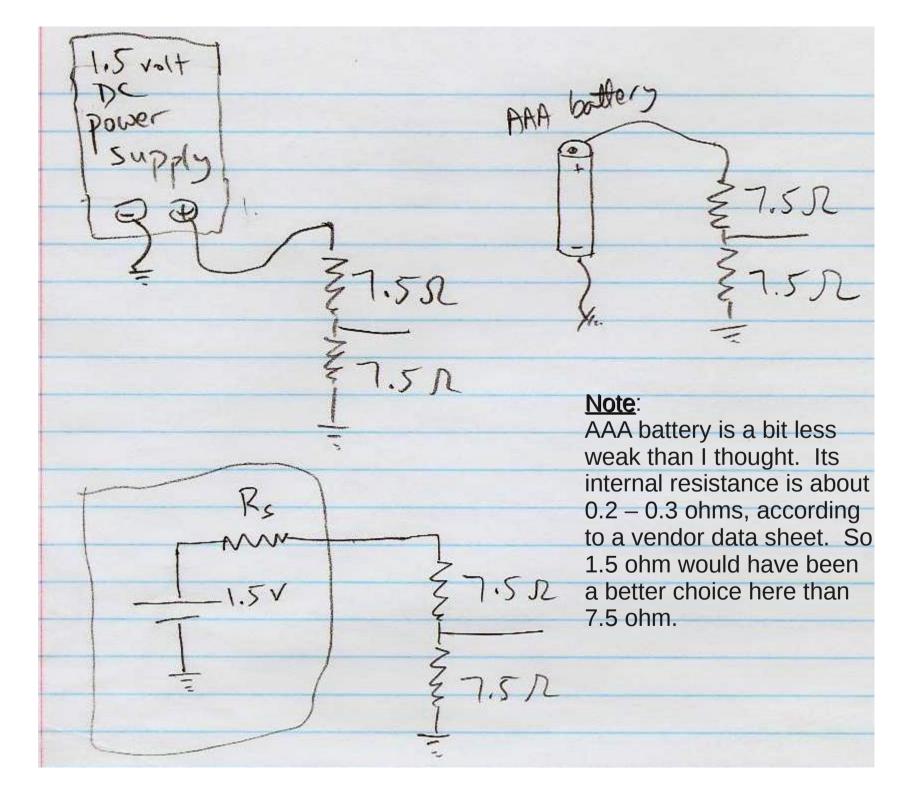
To determine impedance: charge V, measure
$$\frac{\Delta V}{\Delta I} = R$$

extreme case: $\frac{V_{+L}}{I_{SC}}$ compares open circuit of
short circuit
we forced Vout to be O volts, then we assured ΔI .
 $+10V - T + 6V = T_1 \int \frac{2}{3}R \int \frac{1}{3}s$
 $\frac{1}{3}R \int \frac{1}{3}R \int \frac{1}{3}s \int \frac{1}{3}r \int \frac{1}{$

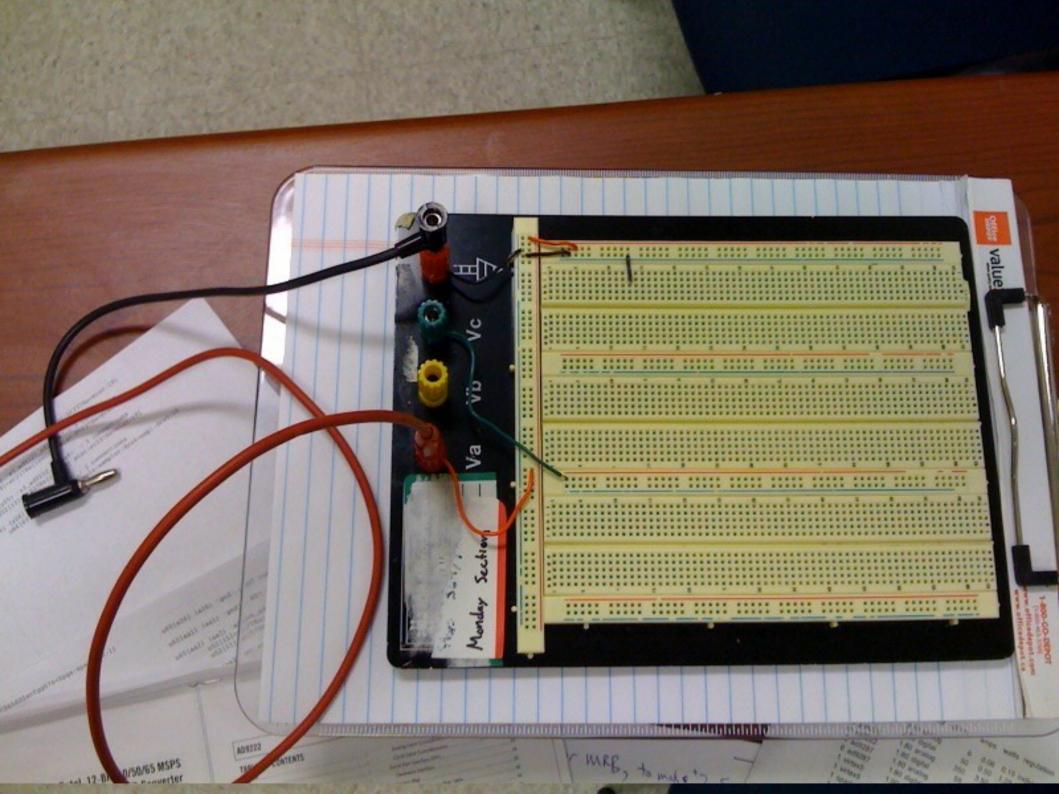
$$J_{1} = \frac{10V - 6V}{R} = \frac{4V}{R}$$

$$J_{2} = \frac{10V - 6V}{R} = \frac{4V}{R}$$

$$J_{2} = \frac{1}{R} = \frac{6V/R}{R}$$


$$J_{3} = J_{2} - J_{1} = \frac{2V}{R}$$
after forcing divider output to $+6V$,
$$AV = \frac{6V - V_{1}}{R} = \frac{6V - 6V}{R} = \frac{1}{R}$$

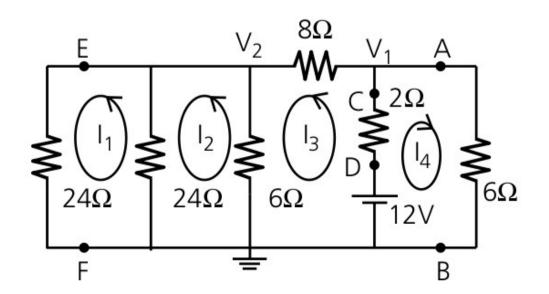
$$AV = \frac{1}{R} = \frac{1}{R} = \frac{1}{R} = \frac{1}{R}$$


$$AV = \frac{1}{R} = \frac{1}{R} = \frac{1}{R}$$

$$AV = \frac{1}{R} = \frac{1}{R}$$

$$AV = \frac{1}{R} = \frac{1}{R}$$

"stiff" voltage source Z Rs << Rin voltage source Z Rs ~ Rin " weak" weak source troops says under 12ad. iff source unchanged


1.5					-	-	-																																																
	T	-	-	-	-	-				-											-	_					-		-	-	-	-	-	-	-				-	-		- 20	-	-	-	-	-	-	-		-			-	
	н	-	-	-	-															2	21					-															-							6							
	н													-	-			-		-	-	-	-	_	-	-	-	-	<u>.</u>		*							*					1					٤.,							
	н			-	-	-	-	_	_	_1					12				-				10												-				10				-	-				_				-			
	н				2	2	2	2		3						=		1.10			* 1					-		* 1															2	-							. 8			12	
	ш			-	2	2	-	2	2				1		-	2	5.5		=	-	= !					-																	-	Ξ.		1			2	2	20			21	
122	н														2	20	20	12	2	Ξ.	23	5.5				=	-	-						-																				2.	
	н		(#															12	-	2	23					2	2				5	5.5		5	5.5		*			-		6.86													
100																			-	_	-		-	-	-	-	-		-	-	-		-	-								. *	*	*					*					H	
	H			-	-		_																																																
* *				2	2	2								*	*																								-			-						1.00	-						1
::				2	2	2								2									-	-										* 1											24			2	24	24		1			- B
2.2									1		2		2	2	2.			-	2	= :		1.5		-	*	*	-					6 H		-		-					6 11														
		-		-							1			2	21		2	12	2					2	2	5	5.5	5.5		-	-						-	6.8				-					-				1			- 0	
						9				-	1			1	12				-	-			10	-	-	-	1		1	-	-		-	-					-			-					-		-			-		-	(C 18
			-	-				_	-				-		-	-	-	_									-	-				-							2			_	3				38				8	3	13	12	
* *						-			-			-	_					-																	E 18							-		-			-			-		-			
													*		* *			*			6.14																																		
**		-								-						-					-		-		_	_	-		-			-		-				-		-	-	-	-				-	-	-		-	-			
	-	-		#i 1		1.1	0.0				-					1.0			2.				22						-	-	- 11		-		4				12				8				12				8		1	2	
	14	*	*	H 1						-				-				-					-	2	21				0	2	10				5.5				2			*		E .	E 18					E.H				-	
	*	2	5			12						*	*					-		6.8									2	21	22	-	23						2			5				-				E . H	*		-		
		2	21			8				2	-	-	-	-			*	* 1					-	*													22		24	20				10	10	0	2	2	10	12	2	5		E	
**		100	-	-		1	-	-	-	-	-	-	-				*					*	*	*	* 1	•	() H																		12	2	2	20	20	22	2	2	2.	0	
																																														-	-	-		-	-	-	-	1.111	b
		K	R A	6.8	E H	1	-	-	-	-	-	*	*		1.1	-					-	-	-			6.8		-	-																										
	T	-		•					-	*	-	*			6 M																			10		11			23	5.5	8	-		6 M	-	*	*	* *	E .H		*	H 3	H ()	100	
**							-	-	-	-	-		*		6 M	*		* *	6 #			*														22			24	10	0		10	10	2	5	5	36	12		-	*		D	
**	4	-		22	12	12	2	2	2	5	5	5	5			-						-	-	-	-	с.н		*	*		E. 10				-					2.2				1.	2	2	20	20	20		0	2.	10	0	
		-				-	-	-	-	-	-	~		1		-	~					*	8	10		9. M	8		H 1.3	#E .#	A. (444)				*		É M	*												-		2.		8	
**			-	-		_	_		_	-	_		_			_	_			-	_		-	-	-	_	m	_	_	_	8	_	_	_		_	_	-	2		_	5	\$0.				53				3		13		
						_	-					H)	100		E 18					-		-				. w		-													-	_	-	-		-			-	-	-	-			
			1				*	_		×		H 3	•		E ME			-	-			-	÷.												-					12			-	1 1 mar	*	2	5			-	-				
R R	1	-		-	-	-	_			~			-		-	_	_	-	_	_	-		-	-			_		-	-		_		_		_		-			-	-	-	-	-	-	~	-		-	-				
	-	H ()	6.8	E H		-	-	-	-	-	-		2					. 20		-		- 1	9				30	-			38							ä				20	ii.			1	2	_	_	-	2	-	8		
**	-	*	• *	1 11		-	-	×	-											-	2			24			2	2			0	51	56	-	23								6 10		*			6.8	-			6.8		-	
221	£		5.8		*	-	-	-			-									-		-	1.1				-			10			2.2			5.5		2.5					92		-		÷.	E M		*	K)	K .H	6.00	-	
			-		2	2	-		-	-				E M		*		6 M			-	H ()	6.8	6.8	С н	-						_		-	2	2.2	2	22	20			20	12	2	5			2.5	-		5		-	-	
	-	-		-	-	~	~	-	-	-					-	*	-		-	M	N 1		6.8	6.8	С. Ж			HE I		е н							H		2.			12	19	2	2	2	2	10	0	0		2.5		100	
		-																											-												or and the	-			-	-			-	-	-	-	-	-	
	4	1 H		-	-	-	-	-	-		6 1			-		-				-	-	-	1	1		-	-	-	-	1 24	-			1	_													-					-		
			E .M	-	*	×	-		-	-				-	-	-		-	-	-			22	12		2	2			10	2		10	2	2.2		*							-	*	-		1		-	-	E 16		•	
	•		1	-	-	*	H			-	• •			-		-			m	-	-			1.1	E 10	-				-	-	-	12	-		12	-			2		1	-	HE .	-				*	-				0	
	2		-	3	-	2							-	*	×	-				m	ME . 8		E .#	E M	-	-	-	-		-	-	-		-			-	-	-	-			-	-	2			1	-	-			1	C I	
			-	-	5	-				57	1	1.0	0.94			10.0	1	20 .	*	×.	N . 3			E.M	-	-	-		E 16			1E 18	-	-		-	-		-			-	-	-	-			1	2	-					
				_			-		_	1				-	-	-		2		-		4,	_	_		-	8		_		35	-	_	-	\$	-		45				22				55	:				8	-	53		
										6 M		-					0.00		-					-	-	-			-		-			-		-	-	-	-	-	_	-		-			_	_							
			*		•	•	¢.		E 🗯		-			-			E. M.							-					2	2						-	-	-	-	53	5.8		-				1	*							
				-		-					-				-	11.2	-	-		-		6	-	-				A	_	-				-	-		_	-	_								1					5			
1																																																			-			-	
1.0																																																							

Sample Lab Reports

- I did 2/5 of Lab 1; Jose did 4/5.
 - I would have given my own report (if 5/5 done) an A-
 - Jose would have given his own report (if 5/5 done) an A-
- http://positron.hep.upenn.edu/pet/wiki/index.php/Us
- http://positron.hep.upenn.edu/pet/wiki/index.php/Us

• Note that Jose will be grading the reports

Series and parallel resistors, mesh currents, node voltages, Thevenin and Norton. (a) Write down the equations for the mesh currents I_{1-4} in figure 2.25, but do not solve them. (b) Find the current $I_3 + I_4$ supplied by the battery by simplifying series and parallel combinations of resistors. (c) Find V_1 and V_2 . (d) Hence find I_{1-4} and check them against (a). (e) Find the Thevenin equivalent of the circuit to the left of AB; use this to check I_4 . (f) Find the Norton equivalent of the circuit across the terminals CD. Use this to check $I_3 + I_4$. (g) Find the Norton equivalent of the circuit to the right of EF; use it to check I_1 . (Ans: (a) $I_3 + I_4 = 2A$; (c) $V_1 = 8 \text{ V}; V_2 = 8/3 \text{ V};$ (d) $I_1 = 1/9 \text{ A}; I_2 = 2/9 \text{ A}; I_3 = 2/3 \text{ A};$ $I_4 = 4/3$ A; (e) $V_{EO} = 144/14$ V, $R_{EO} = 24/14$ Ω ; (f) $I_{EO} = 3$ A, $R_{EQ} = 4 \Omega$; (g) $I_{EQ} = 18/19 \text{ A}, R_{EQ} = 24 \times 19/143 \Omega$.)

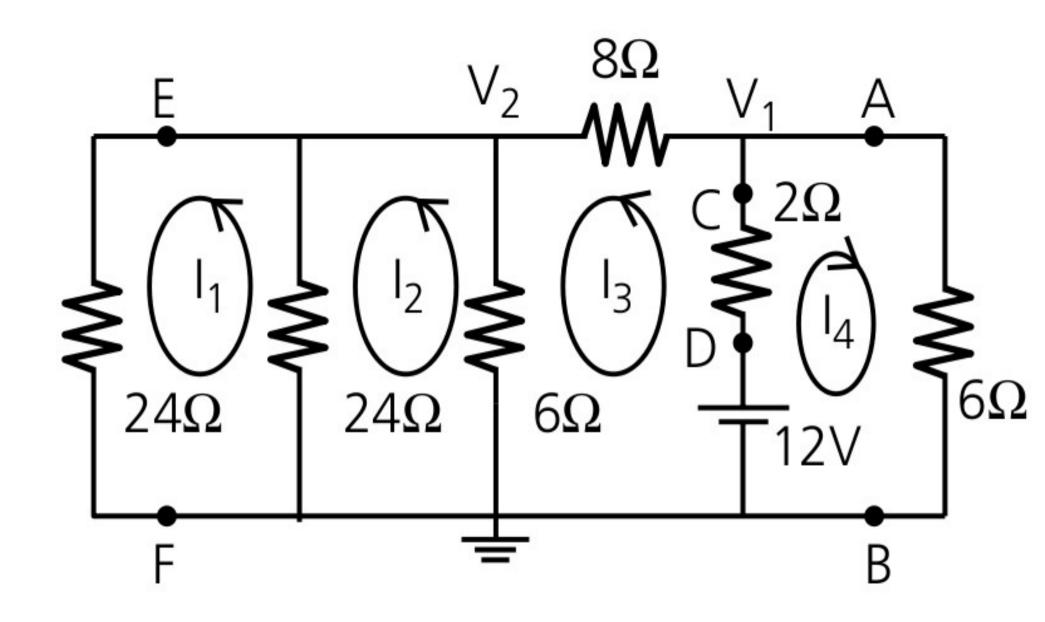


Fig. 2.25.

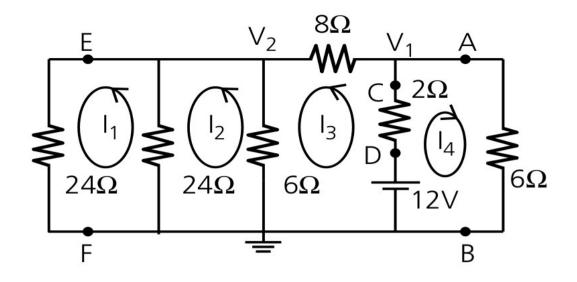


Fig. 2.25.

Series and parallel resistors, mesh currents, node voltages, Thevenin and Norton. (a) Write down the equations for the mesh currents I_{1-4} in figure 2.25, but do not solve them. (b) Find the current $I_3 + I_4$ supplied by the battery by simplifying series and parallel combinations of resistors. (c) Find V_1 and V_2 . (d) Hence find I_{1-4} and check them against (a). (e) Find the Thevenin equivalent of the circuit to the left of *AB*; use this to check I_4 . (f) Find the Norton equivalent of the circuit across the terminals *CD*. Use this to check $I_3 + I_4$. (g) Find the Norton equivalent of the circuit to the right of *EF*; use it to check I_1 .