PHYSKS 364, 2010-10-04, page 1 (BILCASHMANSKAS)
opamps II
Last week, we used the "Golden Rules" of idealized opamps to analyze many useful pomp circuits: followers, (nom)-inverting amplifies, integrators, summing amp, etc.
Rule \#2. (that inputs draw ≈ 0 current) is easy to understand as a consequence of the opamp's very high (typically $10^{6} \sim 10^{12} \Omega$) input resistance. when we study transistor circuits, we will see how the large input resistance of transistor-based amplifiers arises.
Rule \#1 (that negative feedback will adjust bout such that $V_{i n}^{+} \simeq V_{i n}^{-}$) is less obvious. I said last week that Rub \#l was a consequence of the opamp's very high (typically $\sim 10^{6}$ or more) gain, but I gave no more details.
Let's analyze a few opanp circuits for an oparp of large but finite gain 9, and then see what happens as $G \rightarrow \infty$.

FOLLOWER: $\quad V_{\text {OUT }}=G:\left(V_{+}-V_{-}\right)=G \cdot\left(V_{1 N}-V_{\text {OUT }}\right)$
Vout $(1+G)=G \cdot V_{\text {in }}$
clearly. Vout $\rightarrow V_{\text {in }}$ as $G \rightarrow \infty$, which is the same result we got
by using the Golden Rules.
oops: Vout $=$ Yin $* \mathrm{G} /(\mathrm{G}+1)$

PHYSkS 364, 2010-10-04 R2
Inverting Amp:

$$
V_{\text {OUT }}=G_{1} \cdot\left(V_{+}-V_{-}\right)=-G_{-} \cdot V_{-} \Rightarrow V_{-}=-\frac{V_{\text {OUT }}}{G}
$$

using very large $R_{i n}$ of opamp, $I_{1}=I_{2}$

$$
\begin{gathered}
\Rightarrow\left(V_{\text {IN }}-V_{-}\right) / R_{1}=\left(V_{-}-V_{\text {OUT }}\right) / R_{2} \\
\Rightarrow \quad \frac{1}{R_{1}}\left(V_{\text {IN }}+\frac{V_{\text {OUT }}}{G}\right)=-\frac{1}{R_{2}}\left(\frac{V_{\text {OUT }}}{G}+V_{\text {OUT }}\right)
\end{gathered}
$$

some rearranging $\Rightarrow \frac{V_{\text {out }}}{V_{1 N}}=-\frac{R_{2}}{R_{1}} /\left(1+\frac{1}{G}\left(1+\frac{R_{2}}{R_{1}}\right)\right)$
so $\frac{V_{\text {Out }}}{V_{i} N} \rightarrow-\frac{R_{2}}{R_{1}}$ as $\quad G \rightarrow \infty$
which again matches the Golden Rule result.
By the way, what is V_{-}now?

$$
V_{-}=-\frac{V_{\text {ouT }}}{G_{1}}=-\frac{R_{2}}{R_{1}} V_{1 N} /\left(G+1+\frac{R_{2}}{R_{1}}\right)
$$

so as $G \rightarrow \infty, V_{-} \rightarrow 0 \quad$ ("virtual ground"), as the Golden Rules imply.

PHysicS 364, 2010-10-04, page 3

Non-Inverting Amp:

$$
\begin{aligned}
& V_{\text {out }}=G \cdot\left(V_{+}-V_{-}\right)=G \cdot\left(V_{1 N}-V_{-}\right) \\
&\binom{\text {and here we again }}{\text { use the fat that inputs }}=G \cdot\left(V_{\text {IN }}-\frac{R_{2} V_{\text {out }}}{R_{1}+R_{2}}\right) \\
& V_{\text {out }} \cdot\left(1+\frac{G R_{2}}{R_{1}+R_{2}}\right)=C_{1} \cdot V_{\text {IN }} \\
& \frac{V_{\text {out }}}{V_{\text {IN }}}=\frac{G}{1+\frac{G R_{2}}{R_{1}+R_{2}}}=\frac{G \cdot\left(R_{1}+R_{2}\right)}{R_{1}+R_{2}+G_{1} R_{2}}
\end{aligned}
$$

as $\quad G \rightarrow \infty, \frac{V_{\text {OuT }}}{V_{\text {iN }}} \rightarrow \frac{R_{1}+R_{2}}{R_{2}}=1+\frac{R_{1}}{R_{2}}$ as wee got From Coldankubo

What is V_{-}?

$$
\begin{aligned}
& V \text { is } V_{-}! \\
& V_{-}= \frac{R_{2} V_{\text {out }}}{R_{1}+R_{2}}=\frac{R_{2} V_{1 N}}{R_{1}+R_{2}} \cdot \frac{G \cdot\left(R_{1}+R_{2}\right)}{R_{1}+R_{2}+G R_{2}} \\
& \underset{\text { as } G \rightarrow \infty}{ } \frac{R_{2} \cdot V_{1 N} \cdot G}{G \cdot R_{2}}=V_{\text {iN }}
\end{aligned}
$$

as Golden Rules imply, $\quad V-V_{\text {in }}$ as $G \rightarrow \infty$
So you can see that G.R. are just a shorthand for limit $G \rightarrow \infty, R_{10} \rightarrow \infty$

Physks 364, 2010-10-04, page
Let's look at LM>41 data sheet. It quoter these panameters :
"Input offset Voltage" (a) $25^{\circ} \mathrm{C}$
"Input Bias Current"
"Input offset Current"
"Input Resistance"
$\frac{\text { (typical) }}{1 m V} \frac{(\text { maximana) }}{5 \mathrm{mV}}$
"Voltage Gain"
BOnA $500 n A$

$$
20 n A \quad 200 n A
$$

"Output Voltage Saving" (V supply $= \pm 15 \mathrm{~V}) \pm 14 \mathrm{~V} \pm 10(\mathrm{~min}) \mathrm{V}$
"Output shart-Circuit Current" $25 m A$
"Band width"
1.5 mHz
"Slew Rate"

$$
0.5 v / \mu s
$$

It is important to know what these numbers mean when you select an opamp for your own project, $f^{\text {and }}$ it is helpful to be aware' of there limitations (and how to work around them) when you build or study a circuit using a given oparnp.
The 1741 is a cheap $(\$ 0.75)$ and simple opamp - like an old Dodge Dart. you can get far better performance from newer components.
we can explore the 741 's limitations to understand the ideas for real-life opamp we.

General Description

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.
The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and
output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.
The LM741C is identical to the LM741/LM741A except that the LM741C has their performance guaranteed over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Features

Connection Diagrams

Note 1: LM741H is available per JM38510/1010
Order Number LM741H, LM741H/883 (Note 1),
LM741AH/883 or LM741CH
See NS Package Number H08C
Ceramic Flatpak

Order Number LM741W/883 See NS Package Number W10A

0093403
Order Number LM741J, LM741J/883, LM741CN
See NS Package Number J08A, M08A or N08E

Typical Application

Offset Nulling Circuit

00936107

Absolute Maximum Ratings (Note 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Note 7)

	LM741A	LM741	LM741C
Supply Vottage	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 3)	500 mW	500 mW	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage (Note 4)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration	Continuous	Continuous	Continuous
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C} 10+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Soldering Intormation			
N-Package (10 seconds)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
J~ or H-Package (10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
M-Package			
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$

See AN-450 "Sufface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 8)
400 V
400 V
400 V

Electrical Characteristics (Note 5)

Parameter	Conditions	LM741A			LM741			LM741C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Thüt Offet Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & R_{S} \leq 10 \mathrm{k} \Omega \\ & R_{S} \leq 50 \Omega \\ & \hline \end{aligned}$		0.8	3.0		1.0	5.0		2.0	6.0	$\begin{aligned} & m v \\ & m v \end{aligned}$
	$\begin{aligned} & T_{A M I N} \leq T_{A} \leq T_{A M A X} \\ & R_{S} \leq 50 \Omega \\ & R_{S} \leq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$		1	4.0			6.0			7.5	$\begin{aligned} & m V \\ & m V \end{aligned}$
Average Input Offset Voltage Drift				15							$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage Adjustment Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	± 10				± 15			± 15		mV
Thputofset Gutrent	$T_{A}=25^{\circ} \mathrm{C}$		3.0	30		20	200		20	200	nA
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {AMAX }}$			70		85	500			300	nA
Average Input Offset Current Drift				0.5							$n A^{\circ} \mathrm{C}$
Iņput Bias Curtenta	$T_{A}=25^{\circ} \mathrm{C}$		30	80		80	500		80	500	nA
	$T_{\text {AMMN }} \leq T_{A} \leq T_{A M A X}$			0.210			1.5			0.8	$\mu \mathrm{A}$
Input Resistance	$T_{A}=25^{\circ} C_{1} V_{S}= \pm 20 \mathrm{~V}$	1.0	6.0		0.3	2.0		0.3	2.0		MS2
	$T_{A M I N} \leq T_{A} \leq T_{A M A X}$ $V_{\mathrm{S}}= \pm 20 \mathrm{~V}$	0.5									$\mathrm{M} \Omega$
Input Voltage Range	$T_{A}=25^{\circ} \mathrm{C}$							± 12	± 13		V
	$T_{\text {AMIN }} \leq T_{A} \leq T_{\text {AMAX }}$				± 12	± 13					V

Electrical Characteristics (Note 5) (Continued)

Parameter	Conditions	LM741A			LM741			LM741C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Varge Signal Voltage Gain:	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V} \\ & V_{S}= \pm 15 \mathrm{~V}, V_{O}= \pm 10 \mathrm{~V} \end{aligned}$	50			50	200		20	200		V / mV V/mV
	$\begin{aligned} & T_{\text {AMIN }} \leq T_{A} \leq T_{\text {AMAX }} \\ & R_{L} \geq 2 \mathrm{k} \Omega, \\ & V_{S}= \pm 20 \mathrm{~V}, V_{O}= \pm 15 \mathrm{~V} \\ & V_{S}= \pm 15 \mathrm{~V}, V_{O}= \pm 10 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V}, V_{O}= \pm 2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 32 \\ & 10 \\ & \hline \end{aligned}$			25			15			V / mV V / mV V / mV
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 20 \mathrm{~V} \\ & R_{L} \geq 10 \mathrm{k} \Omega \\ & R_{L} \geq 2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 16 \\ & \pm 15 \end{aligned}$									$\begin{aligned} & v \\ & v \end{aligned}$
	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & R_{L} \geq 2 \mathrm{k} \Omega \end{aligned}$				$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$
Outputishitcircuit corrent	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {AMIN }} \leq T_{A} \leq T_{A M A X} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	25	$\begin{aligned} & 35 \\ & 40 \end{aligned}$		25			25		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Common-Mode Rejection Ratio	$\begin{aligned} & T_{\text {AMIN }} \leq T_{A} \leq T_{A M A X} \\ & R_{S} \leq 10 \mathrm{k} \Omega, V_{C M}= \pm 12 \mathrm{~V} \\ & R_{S} \leq 50 \Omega, V_{C M}= \pm 12 \mathrm{~V} \end{aligned}$	80	95		70	90		70	90		$\begin{aligned} & d B \\ & d B \end{aligned}$
Supply Voltage Rejection Ratio	$\begin{aligned} & T_{A M I N} \leq T_{A} \leq T_{A M A X} \\ & V_{S}= \pm 20 \mathrm{~V} \text { to } \mathrm{V}_{S}= \pm 5 \mathrm{~V} \\ & R_{\mathrm{S}} \leq 50 \Omega \\ & R_{S} \leq 10 \mathrm{kK} \\ & \hline \end{aligned}$	86	96		77	96		77	96		$\begin{aligned} & d B \\ & d B \end{aligned}$
Transient Response Rise Time Overshoot	$T_{A}=25^{\circ} \mathrm{C}$, Unity Gain		$\begin{array}{r} 0.25 \\ 6.0 \end{array}$	$\begin{aligned} & 0.8 \\ & 20 \end{aligned}$		$\begin{gathered} 0.3 \\ 5 \end{gathered}$	\cdots		$\begin{gathered} 0.3 \\ 5 \end{gathered}$		$\mu \mathrm{s}$ $\%$
"Bandwidth (Note6)	$T_{A}=25^{\circ} \mathrm{C}$	0.437	1.5								MHz
Slewimate	$T_{A}=25^{\circ} \mathrm{C}$, Unity Gain	0.3	0.7			0.5			17	28	V/ ma
Supply Current	$T_{A}=25^{\circ} \mathrm{C}$					1.7	2.8		1.7		
Power Consumption	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 20 \mathrm{~V} \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$		80	150		50	85		50	85	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
LM741A	$\begin{aligned} & V_{S}= \pm 20 \mathrm{~V} \\ & T_{A}=T_{A M M} \\ & T_{A}=T_{A M A X} \end{aligned}$			$\begin{aligned} & 165 \\ & 135 \end{aligned}$							$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
LM741	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & T_{A}=T_{\text {AMM }} \\ & T_{A}=T_{\text {AMAX }} \end{aligned}$					60 45					$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

Note 2: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Electrical Characteristics (Note 5) (Continued)
Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_{i} max. (listed under "Absolute Maximum Ratings $\left.{ }^{\prime \prime}\right) . T_{f}=T_{A}+\left(\theta_{j A} P_{\mathrm{D}}\right)$.

Thermal Resistance	Cerdip (J)	DIP (N)	$H 08(\mathrm{H})$	$\mathrm{SO}-8(\mathrm{M})$
θ_{jA} (Junction to Ambient)	$100^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$170^{\circ} \mathrm{C} / \mathrm{W}$	$195^{\circ} \mathrm{C} / \mathrm{W}$
θ_{jC} (Junction to Case)	N / A	N / A	$25^{\circ} \mathrm{CN}$	N / A

Note 4: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 5: Unless otherwise specilied, these specifications apply for $V_{S}= \pm 15 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Note 6; Catculated value from: $\mathrm{BW}(\mathrm{MHz})=0.35 /$ Rise Time (μs)
Note 7: For military speciflcations see RETS741X for LM741 and AETS741AX for LM741A
Note 8: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pm

Schematic Diagram

Physks 364, 2010-10-04, page 5

- Voffset $\equiv \begin{array}{r}\Delta V \text { (between }+ \text { and - inputs) } \\ \\ \\ \text { needed to make Gout }=0\end{array}$ (a few mv for 1741)
- Ibias finite DC current drawn by

Ioffset \rangle Note $I_{\text {bias }} \equiv \frac{1}{2}\left(I_{+}+I_{-}\right)$, while

$$
I_{\text {offset }} \equiv\left|I_{+}-I_{-}\right|
$$

Ios is typically smaller than I_{b} by $x<-\times 10$ (these are $O(100 n A)$ for 1741)

- $R_{\text {IN }}$ and gain are large but of course finite. KiN for FET-based opamps is enormously larger than Riv for BJT-based opamps. Details in coming weeks.

$$
\left(O\left(10^{6} \Omega\right) \text { and } O\left(10^{5}\right) \text { respectively for } 1741\right)
$$

- As noted last week, Vout cannot swing beyond the power "rails." In fact, the 1741 typically will only go to $\pm 14 \mathrm{~V}$ or less, if powered with $\pm 25 \mathrm{~V}$. Some opampl offer "rall-to-rail" outputo
- The largest current a 1741 will source or sink is about 25 mA . This can be an issue when driving a big 8Ω speaker, charging a big capacitor, driving a long cabbie, driving a motor, etc.' Sometimes ore enlists the help of a high-current external transistor in these cases.

PHYSKS 364, 2010-10-04, page 6

- Every opamp has some finite band width, ie. range of frequencies over which it can amplify. Usually the frequency response looks like that of an VRC loapass filter:

this expression $\rightarrow 1$ for $f \ll \frac{1}{2 \pi R C}$

$$
\text { and } \rightarrow \frac{1}{2 \pi R C} \cdot \frac{1}{f} \text { for } f \gg \frac{1}{2 \pi R C}
$$

So one often speaks of "gain " bandwidth product" when one is in the $1 / f$ regime.
The product $f \cdot\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right|$ is constant along the falling part of the curve. (continued next page.)

PHySiCS 364, 2010-10-04, page 7
Let's take 1741 typical values

$$
B \omega=1.5 \mathrm{mHz}, \quad G=2 \times 10^{5} \quad(\approx 106 \mathrm{~dB})
$$

(from HH figure 4.80,
page 243)

You can see that "bandwidth" for an "pamp does not mean fad. It means the frequency at which the gain $=1$.
If I build a 'Ty follower \rightarrow, its response will look lithe -.... curve above. If I build a $\times 100$ amplifion its response will resemble the curve above.

You can see this from the
finite-gain $\left|V_{\text {out }} / V_{\text {in }}\right|$ expression on prose 3 of these notes.

Why the gain rolls off this way relates to the subtle topic "frequency compensation" that is beyond the scope of this course. You can read about it in HH if you're curious; The key idea is to get the gain below 1 well before internal phase shifts reach 180°, to prevent oscillations.

PHysics 364, 2010-10-04, page

- Finally, a maximum slew rate is quoted. A slew rate limit is a saturation of dVout/dt. It may arise, for instance, if an internal amplifier stage has a current limit and is charging an internal capacitance.
For a ${ }^{1} 741$, the maximum $\left|\frac{d V \text { out }}{d t}\right|$ (slew rate) is $0.5 \mathrm{~V} / \mathrm{h}^{\prime}$.
As a form of saturation, this is a non-linear effect, ie. it is a frequency limit that depends upon amplitude. Tlew-rate lows, trimiting an - opairp close to a slecu-rate limit can distort your signal - erg introducing fourier component's not present in your input signal.
Slewing is also pertinent when you need to get from VouT (min) to Vout (max) as quickly as passible - something wa will discuss inhere. we introduce the comparator below.

NOTES WILE CONTINUE FROM HERE ON WED
see blackboard or see positron. hep.upenn.edu/p364

PHYSics 364, 2010-10-04, page 9
To illustrate the effect of feed back on onfurt impedance, let's analyze for finite gain the Labs (part 1) example in which we artificially gave, the 1741 an output resistance of 1 K .

$$
\begin{aligned}
& V_{\text {N }} \\
& V_{X}=G_{1} \cdot\left(V_{+}-V_{-}\right)=G \cdot\left(V_{\text {IN }}-V_{\text {OUT }}\right) V_{R_{X}} V_{\text {OUT }}=3 K \\
& V_{X} \cdot \frac{R_{L}}{R_{X}+R_{L}}=V_{\text {OUT }} \Rightarrow V_{\text {OUT }} \cdot \frac{R_{X}+R_{L}}{R_{L}}=V_{X}=G \cdot\left(V_{\text {IN }}-V_{\text {OUT }}\right)
\end{aligned}
$$

after rearranging, $V_{\text {out }}=V_{\text {iN }} \cdot \frac{G}{C_{1}+1+\frac{R_{x}}{R_{L}}}=V_{1 N} \cdot \frac{1}{1+\frac{1}{G}+\frac{R_{x}}{G R_{L}}}$
"output impedance" Rout measures how much Gout will droop as we increase Iout, i.e. $\quad d V_{\text {out }} / d I_{\text {OUT }}=-$ Rout.
let's define $\gamma \equiv \frac{1}{R_{L}}$, so $I_{\text {out }}=V_{\text {out }} / R_{L}=\gamma V_{\text {out }}$

$$
\begin{aligned}
& \text { then } \frac{-1}{R_{\text {OUT }}}=\frac{d I_{\text {OUT }}}{d_{\text {OUT }}}=\frac{d\left(\gamma V_{\text {OUT }}\right)}{d V_{\text {OUT }}}=\gamma+\frac{V_{\text {out }} d \gamma}{d V_{\text {OUT }}}=\gamma+V_{\text {OUT }} / \frac{d V_{\text {out }}}{d \gamma} \\
& \text { Vout }=V_{\text {IN }}\left[1+\frac{1}{G}+\frac{\gamma R_{x}}{G}\right]^{-1} \Rightarrow \frac{d V_{\text {OUT }}}{d \gamma}=\frac{-V_{\text {IN }} \cdot R_{x} / G}{\left(1+\frac{1}{G}+\frac{\gamma R_{x}}{G}\right)^{2}}=-\frac{V_{\text {OUT }} R_{x}}{G+1+\gamma R_{x}} \\
& \Rightarrow \frac{-1}{R_{\text {OUT }}}=\gamma-V_{\text {OUT }} \cdot \frac{G+1+\gamma R_{x}}{V_{\text {OUT }} R_{x}}=\gamma-\frac{G+1}{R_{x}}-\gamma \\
& \Rightarrow R_{X}
\end{aligned}
$$

Probably \Rightarrow a less laborious way to prove this, but you car see that the feedback reduces the output resistance from R_{x} to $R_{x} /(1+C)$ Similar analysis is possible for input resistance w/ feedback.

PHYSkS 364, 2010-10-04, page 10
Now for something rather different: companotors and positive feedback.
Suppose you just want to compare two signals: for instance, compare your room tempenature to the thermostat setting.

We could do this with an opamp. But...

- opamps don't like to be slammed from rail to rail, and can take some time to recover from each transition
- we may wart to slew from OFF to ON and back fasten than limited opamp slew rate
- opamp $\pm V_{\text {supply m may not be what we }}$ wart for output leg. to furnace control. We may wont more flexibility is output voltages for on and of states.
for these reasons, the comparator exists.

PHMSKS 364, 2010-10-04, page 11

LMSII componator (no feedback yet)

The problem with this circuit is that any noise makes it indecisive.
By the way, the mysterious-looking output is called ar "open collector output. when the output is in the low state, it looks like a short circuit to ground. when it is in the HICH state, it looks like an open circuit. This gives the user considerable Flexibility in using the output. An open collector artery requires a "pul lup" resistor to reach the proper HICH voltage.

PHYSics 364, 2010-10-04, page 12
The solution to the open-loop comparator's indecisiveness is called a Schmitt Trigger. It adds hysteresis to the circuit. in facts the symbol for a schmidt Tribe n
which resembles the M rs. H curve for a ferromagnet.

When bout is driven to ground by componatdr (in low state), $V_{+}=0$, so the low-to-high threshold is at ova.
When Gout is pulled up to +15 (in Hick state),

$$
\begin{aligned}
& V_{\text {OUT }}=15 \mathrm{~V} \cdot \frac{110 \mathrm{~K}}{110 \mathrm{~K}+5 \mathrm{~K}} \simeq 14.4 \mathrm{~V} \\
& V_{t}=14.4 \mathrm{~V} \cdot \frac{10 \mathrm{~K}}{10 \mathrm{~K}+10 \mathrm{~K}} \simeq 1.3 \mathrm{~V}
\end{aligned}
$$

so the high-to-low threshed is at $+1.3 \mathrm{~V}_{0}$
(This sounds backward, but note that $V_{1 n}$ is at the inverting $(\rightarrow$ input in this example.)

PHyskS 364, 2010-10-04, page 13
The resulting hysteresis looks like this:

This is an example of positive feedback: once the output moves into a given state, the threshold changes so that it becomes relatively difficult to leave that state.
(Sun Thu writes that upon sailing to the enemy's beach, you must order your soldiers to burn their own boats.)
Clearly, once your thermostat has switched on the furnace, you want to leave it on for several minutes, not just long enough to raise the temper ature ~0.1 degree. Thermostat contains something analogous to a Schmitt Trigon.

$$
\text { PHysics 364, 2010-10-04, page } 14
$$

One handy thing you can build with a schmitt trigger is an

Suppose $V_{\text {cap }}=0$ ot $t=0$. If Vout is low, it is driven to -15 V , which reduces $V_{\text {cap }}$ with initial $d V_{\text {cap }} / d t=-\frac{T}{C}=-\frac{15 \mathrm{~V}}{100 \mathrm{~K}} \cdot \frac{1}{101 \mathrm{ME}}=-15 \mathrm{~V} / \mathrm{ms}$ Threshold in Low state is $-15 \mathrm{~V} \cdot \frac{10 \mathrm{~K}}{10 \mathrm{KKHack}} \simeq-1.36 \mathrm{~V}$.

Oke Vcap reaches -1.36 V , Gout goes to HKM state, pulled up to $+15 \mathrm{~V} \cdot \frac{110 \mathrm{~K}}{114.7 \mathrm{~K}} \simeq 14.4 \mathrm{~V}$ 。 Then threshed is $+14.4 \mathrm{~V} \cdot \frac{10 \mathrm{~K}}{1 \mathrm{OOK}} \simeq+1.31 \mathrm{~V}$. Initial $d \mathrm{kap} / \mathrm{lt}=\frac{I}{\epsilon}=\frac{+14.4 \mathrm{~V}+1.36 \mathrm{~V}}{100 \mathrm{~V}} \cdot \frac{1}{.0 \mathrm{yN}} \simeq+16 \mathrm{~V} / \mathrm{ms}$.

When $V_{\text {cap reaches }}+1.31 \mathrm{~V}$, it turns around again. Period $\simeq 2 \times \frac{2.6 \mathrm{~V}}{15 \mathrm{Vms}} \simeq .35 \mathrm{~ms}$, ie. frequency $\approx 3 \mathrm{kHz}$.
$V_{\text {cap }} \rightarrow-1.4 V$

