
Physics 8/9, fall 2019, equation sheet
work in progress

(Chapter 1: foundations)

1 year ≈ 3.156× 107 s

circumference of Earth ≈ 40× 106 m (radius = 6378 km)

mass of Earth ≈ 6.0× 1024 kg

speed of light c = 2.9979× 108 m/s

mass of proton or neutron ≈ 1 amu (“atomic mass unit”) = 1 g
mol

= 0.001 kg
6.022×1023

=
1.66× 10−27 kg

Some exact definitions: 1 inch = 0.0254 meter. 1 foot = 12 inches. 1 mile = 5280 feet.

Weight of 1 kg = 2.205 pounds.

Other unit conversions: try typing e.g. “1 mile in centimeters” or “1 gallon in liters”
into google!

Unit conversions: The trick is to make use of the fact that a ratio of two equal values,
like 1 inch

2.54 cm
, equals 1. So you “multiply by 1” and then cancel the unwanted units until

you are left with the desired units. For example, to convert 1 mile into meters, we
can write [notice that each ratio in parentheses equals 1]

1 mile×
(

5280 foot

mile

)
×
(

12 inch

foot

)
×
(

0.0254 m

inch

)
= 1609.3 m .

Significant digits: If I write that the mass of my golden retriever, Alfie, is m =
37.73 kg, the implication, according to convention, is that I know that 37.725 kg ≤
m ≤ 37.735 kg. Since a meal or a visit to the back yard can easily change Alfie’s
mass by about 0.1 kg or so, it seems more realistic for me to quote Alfie’s mass as
m = 37.7 kg, which implies that I know his mass to roughly ±0.1%. If it has been
a week or two since I last picked Alfie up and stood on the scale with him, it may
be more honest for me to write m = 38 kg. So depending on the circumstances,
m = 38 kg or m = 37.7 kg may best convey my knowledge of Alfie’s mass. The key
idea is that, by convention, the number of digits you write down for a given quantity
makes an implicit statement about how well you know that quantity. If all of the
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inputs to a given calculation are known to 3 significant digits, then it is reasonable
for your result to be stated to 3 or 4 significant digits, but not to 5 or 6 significant
digits. One word of caution: when working through a calculation, you usually want
to keep a few extra digits in your intermediate results, then round your final result
to the stated precision at the end. Also, a value like 100 kg, with trailing zeros but
no decimal point, has ambiguous precision; in this unusual case, if you need to be
unambiguous, use scientific notation: 1 × 102 kg or 1.0 × 102 kg or 1.00 × 102 kg;
another trick is to write 100. kg to imply that all of the trailing zeros are significant,
which in this case is the same as 1.00 × 102 kg. When writing homework problems,
I usually avoid numbers like 100 kg, and I go out of my way instead to write 101 kg
or 100.0 kg. Usually if I write “38000 feet” I mean 2 significant digits, whereas if I
write “38001 feet” I mean 5 significant digits; Mazur’s textbook, by contrast, means
5 significant digits in both cases. (I try my best to avoid contradicting the textbook,
and those few times when I do, I aim to tell you that I am doing so.)

A special case: In this course, we do not treat the gravitational acceleration g =
9.8 m/s2 as an input having only two significant figures. Though at different points
on Earth, the acceleration due to gravity varies between 9.764 and 9.834 m/s2, we
will use g in calculations as if it were specified as 9.80 m/s2, so that g does not limit
our ability to solve problems using 3 significant figures.

(Chapter 2: motion in one dimension)

x component of displacement: ∆x = xf − xi where “f” is for (f)inal, and “i” is for
(i)nitial.

If an object goes from xi to xf , changing direction at intermediate points xa and xb,
then distance traveled (in one dimension) is d = |xa − xi|+ |xb − xa|+ |xf − xb|

x component of (instantaneous) velocity: vx = dx
dt

Speed (a scalar) is the magnitude of velocity (a vector). In one dimension, v = |vx|

average velocity = displacement
time interval

vx,av =
xf−xi
tf−ti

average speed = distance traveled
time interval

Solving quadratic equations: If ax2 + bx+ c = 0, then x = −b±
√
b2−4ac

2a
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(Chapter 3: acceleration)

Because we will use exclusively one axis (called the x-axis) for the first nine chapters
of Mazur’s textbook, we need to introduce two conventions that may seem confusing
to you if you took high-school physics. First: for free-fall problems in one dimension
(e.g. you drop a ball, or you toss a ball directly upward in a motion that is perfectly
vertical), the x-axis will point upward. Second: for inclined-plane problems (e.g. a
briefcase slides down an icy driveway), the x-axis will point downhill.

When discussing gravity near Earth’s surface, we introduce a constant g = 9.8 m/s2,
which is “the acceleration due to Earth’s gravity.” If the x axis points upward, then
ax = −g for free fall near Earth’s surface. So for this scenario we use a constant
negative value for ax.

If the x axis points downhill along an inclined plane, then ax = g sin θ for an object
sliding down the inclined plane (inclined at angle θ w.r.t. horizontal). So for this
scenario we use a constant positive value for ax. Galileo studied motion on an in-
clined plane so that the magnitude of ax would be small enough to allow detailed
measurements to be made by eye.

For constant acceleration:
vx,f = vx,i + axt

xf = xi + vx,it+
1

2
axt

2

v2
x,f = v2

x,i + 2ax (xf − xi)

The third equation comes from combining the first two equations and eliminating t.

(Chapter 4: momentum)

Momentum is ~p = m~v. Momentum is constant for an isolated system. A system is
isolated if there are no external pushes or pulls (later we’ll say “forces”) applied to
the system. Conservation of momentum in isolated two-body collision implies

m1v1x,i +m2v2x,i = m1v1x,f +m2v2x,f

which then implies (for isolated system, two-body collision)

∆v1x

∆v2x

= −m2

m1
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If system is not isolated, then we cannot write ~pf − ~pi = 0. Instead, we give the
momentum imbalance caused by the external influence a name (“impulse”) and a

label ( ~J ). Then we can write ~pf − ~pi = ~J .

(Chapter 5: energy)

In chemistry, a calorie is 1 cal = 4.18 J. In nutrition, a “food Calorie” is 1 Cal =
4180 J.

The energy of motion is kinetic energy:

K =
1

2
mv2

For an elastic collision, kinetic energy K is constant. For a two-body elastic collision,
the relative speed is unchanged by the collision, though obviously the relative velocity
changes sign. Thus, for a for a two-body elastic collision along the x axis (Eqn. 5.4),

(v1x,f − v2x,f ) = −(v1x,i − v2x,i)

.

For a totally inelastic collision, the two objects stick together after collision: ~v1f = ~v2f .
This case is easy to solve, since one variable is eliminated.

In the real world (but not in physics classes), most collisions are inelastic but are not
totally inelastic. K is not constant, but v12,f 6= 0. So you can define a coefficient of
restitution, e, such that e = 1 for elastic collisions, e = 0 for totally inelastic collisions,
and 0 < e < 1 for inelastic collisions. Then you can write (though it is seldom useful
to do so)

(v1x,f − v2x,f ) = −e (v1x,i − v2x,i)

If you write down the momentum-conservation equation (assuming that system is
isolated, so that momentum is constant) for a two-body collision along the x axis,

m1v1x,i +m2v2x,i = m1v1x,f +m2v2x,f

and the equation that kinetic energy is also constant in an elastic collision,

1

2
m1v

2
1x,i +

1

2
m2v

2
2x,i =

1

2
m1v

2
1x,f +

1

2
m2v

2
2x,f
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you can (with some effort) solve these two equations in two unknowns. The quadratic
equation for energy conservation gives two solutions, which are equivalent to

(v1x,f − v2x,f ) = ±(v1x,i − v2x,i)

In the “+” case, the two objects miss each other, as if they were two trains passing on
parallel tracks. The “−” case is the desired solution. In physics, the “other” solution
usually means something, even if it is not the solution you were looking for.

(Chapter 6: relative motion)

Center of mass:

xCM =
m1x1 +m2x2 +m3x3 + · · ·

m1 +m2 +m3 + · · ·

Center of mass velocity (equals velocity of ZM frame):

vZM,x =
m1v1x +m2v2x +m3v3x + · · ·

m1 +m2 +m3 + · · ·

(The following chapter 6 results are less important, but I list them here anyway.)

Convertible kinetic energy: Kconv = K − 1
2
mv2

CM

Elastic collision analyzed in ZM (“∗”) frame:

v∗1i,x = v1i,x − vZM,x, v∗2i,x = v2i,x − vZM,x

v∗1f,x = −v∗1i,x, v∗2f,x = −v∗2i,x
v1f,x = v∗1f,x + vZM,x, v2f,x = v∗2f,x + vZM,x

Inelastic collision analyzed in ZM frame (restitution coefficient e):

v∗1f,x = −ev∗1i,x, v∗2f,x = −ev∗2i,x

(Chapter 7: interactions)

For two objects that form an isolated system (i.e. interacting only with one another),
the ratio of accelerations is

a1x

a2x

= −m2

m1
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When an object near Earth’s surface moves a distance ∆x in the direction away
from Earth’s center (i.e. upward), the change in gravitational potential energy of the
Earth+object system is

∆U = mg∆x

(Chapter 8: force)

The rate of change of the momentum of object A is the vector sum of forces exerted
on object A.

Force (newtons: 1 N = 1 kg ·m/s2) is rate of change of momentum:∑
~Fon A =

d ~pA
dt

Impulse (change in momentum due to external force):

~J = ∆~p =

∫
~Fext dt

Equation of motion for a single object A:∑
~Fon A = mA ~aA

Equation of motion for CoM of several objects (depends only on forces exerted by
objects external to the system on objects inside the system, i.e. the vector sum of
external forces): ∑

~Fext = mtotal ~aCM

Gravitational potential energy near earth’s surface (h = height):

Ugravity = mgh

Force of gravity near earth’s surface (force is −dUgravity

dx
):

Fx = −mg
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Potential energy of a spring:

Uspring =
1

2
k(x− x0)2

where x0 is the “relaxed length” of the spring, and k is the “spring constant” (units
for k are newtons per meter).

Hooke’s Law (force is −dUspring

dx
):

Fby spring ON load = −k(x− x0)

(Chapter 9: work)

Work done on a system by an external, nondissipative force in one dimension:

W =

∫ xf

xi

Fx(x)dx

which for a constant force reduces to

W = Fx∆x

Power is rate of change of energy (measured in watts: 1 W = 1 J/s):

P =
dE

dt

In one dimension, power delivered by constant external force is

P = Fext,xvx

(Chapter 10: motion in a plane)

Various ways to write a vector:

~A = (Ax, Ay) = Ax (1, 0) + Ay (0, 1) = Ax î+ Ay ĵ

Can separate into two ⊥ vectors that add up to original, e.g.

~Ax = Ax î, ~Ay = Ay ĵ
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~A = ~Ax + ~Ay

Scalar product (“dot product”) is a kind of multiplication that accounts for how well
the two vectors are aligned with each other:

~A · ~B = AxBx + AyBy = | ~A| | ~B| cos(θAB)

In one dimension, we learned

W = Fx ∆x →
∫
Fx(x) dx

Sometimes the force is not parallel to the displacement: for instance, work done by
gravity if you slide down a hill. In two dimensions,

W = ~F · ~D = Fx ∆x+ Fy ∆y

which in the limit of many infinitessimal steps becomes

W =

∫
~F (~r) · d~r =

∫
(Fx(x, y) dx+ Fy(x, y) dy)

Similarly, in two dimensions, power must account for the possibility that force and
velocity are not perfectly aligned:

P = ~F · ~v

Static friction and kinetic (sometimes called “sliding”) friction:

F Static ≤ µS F
Normal

FKinetic = µK FNormal

“normal” & “tangential” components are ⊥ to and ‖ to surface.

For an inclined plane making an angle θ w.r.t. the horizontal, the normal component
of gravity is FN = mg cos θ and the (downhill) tangential component is mg sin θ. The
frictional force on a block sliding down the surface then has magnitude µK mg cos θ
and points uphill if the block is sliding downhill. You have to think about whether
things are moving and if so which way they are moving in order to decide which
direction friction points and whether the friction is static or kinetic.

(Chapter 11: motion in a circle)
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For motion in a circle, acceleration has a centripetal component that is perpendicular
to velocity and points toward the center of rotation. If we put the center of rotation
at the origin (0, 0) then

x = R cos θ y = R sin θ

~r = (x, y) = (R cos θ, R sin θ) = R (cos θ, sin θ)

The “angular velocity” ω is the rate of change of the angle θ

ω =
dθ

dt

The units for ω are just s−1 (which is the same as radians/second, since radians are
dimensionless). Revolutions per second are ω/(2π), and the period (how long it takes
to go around the circle) is 2π/ω. The velocity is

~v =
d~r

dt
= ωR (− sin θ, cos θ), |~v| = ωR

The magnitude of the centripetal acceleration (the required rate of change of the
velocity vector, to keep the object on a circular path) is

ac = ω2R =
v2

R

and the centripetal force (directed toward center of rotation) is

|~Fc| = mac = mω2R =
mv2

R

Moving in a circle at constant speed (velocity changes but speed does not!) is called
uniform circular motion. For UCM, ~a ⊥ ~v, and ω = constant. Then

~a =
d~v

dt
= −ω2R (cos θ, sin θ) = −v

2

R
(cos θ, sin θ)

(For non-UCM case where speed is not constant, ~a has an additional component that
is parallel to ~v.)

We can also consider circular motion with non-constant speed, just as we considered
linear motion with non-constant speed. Then we introduce the angular acceleration

α =
dω

dt
=

d2θ

dt2

and we can derive results that look familiar but with substitutions

x→ θ, v → ω, a→ α, m→ I, p→ L
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if α is constant (which is a common case for constant torque), then:

θf = θi + ωt+
1

2
αt2

ωf = ωi + αt

ω2
f = ω2

i + 2α (θf − θi)

Rotational inertia (“moment of inertia”) (see table below):

I =
∑

mr2 →
∫
r2dm

Kinetic energy has both translational and rotational parts:

K =
1

2
mv2

cm +
1

2
Iω2

Angular momentum:
L = Iω = m v⊥ r⊥

(where ⊥ means the component that does not point toward the “reference” axis —
which usually is the rotation axis)

If an object revolves about an axis that does not pass through the object’s center
of mass (suppose axis has ⊥ distance ` from c.o.m.), the rotational inertia is larger,
because the object’s c.o.m. revolves around a circle of radius ` and in addition the
object rotates about its own center of mass. This larger rotational inertia is given by
the parallel axis theorem:

I = Icm +M`2

where Icm is the object’s rotational inertia about an axis (which must be parallel to
the new axis of rotation) that passes through the object’s c.o.m.

(Chapter 12: torque)
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configuration rotational inertia

thin cylindrical shell about its axis mR2

thick cylindrical shell about its axis (1/2)m(R2
i +R2

o)

solid cylinder about its axis (1/2)mR2

solid cylinder ⊥ to axis (1/4)mR2 + (1/12)m`2

thin rod ⊥ to axis (1/12)m`2

hollow sphere (2/3)mR2

solid sphere (2/5)mR2

rectangular plate (1/12)m(a2 + b2)

thin hoop about its axis mR2

thin hoop ⊥ to axis (1/2)mR2

Torque:
~τ = ~r × ~F = rF sin θ

τ = Iα

Work and power:
W = τ (θf − θi)

P = τω

Equilibrium: ∑
~F = 0,

∑
~τ = 0
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(Chapter G9: static equilibrium, etc.)

Static equilibrium (all forces/torques acting ON the object sum to zero):∑
Fx = 0,

∑
Fy = 0,

∑
τ = 0

Young’s modulus: ∆L
L0

= 1
E

(
force
area

)

(Onouye/Kane ch1: introduction)

static loads: gravitational forces, due to the weight of the structure or its contents.
Includes dead loads due to the weight of the building and permanently attached
components thereof, and live loads that come and go, such as furniture and people.

dynamic loads: inertial forces, due to resisting the motion of mass. For example:
wind, vibration, earthquakes, falling objects.

(Onouye/Kane ch2: statics)

A force is characterized by point of application, magnitude, and direction. The force’s
line of action passes through the point of application of the force and is in the same
direction as the force.

When we idealize an object as a rigid body, we assume that it undergoes negligible
deformation in response to applied forces. If you think of a body as a huge number
of constituent particles, the body is rigid if the relative distance between every pair
of consituent particles is fixed. The rules of statics (i.e. static equilibrium) apply to
rigid bodies. Statics in a plane gives us 3 equations (see below), allowing us to solve
for 3 unknown forces (or 3 unknown force components, if directions are unknown). If
there are more than 3 unknown force components, then we need additional informa-
tion about how the body deforms in response to applied forces (i.e. the rigid-body
idealization is no longer sufficient); that goes beyond the scope of statics. [But occa-
sionally one can use statics to determine more than 3 unknown forces by using e.g.
mirror symmetry to eliminate all but 3 unknowns.]

Usually a load is a specified external force that a structure must be designed to bear,
such as the weight of snow on the roof or the weight of the building itself. Usually
a reaction is an unknown external force whose value is calculated by imposing the
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conditions of static equilibrium on an object. If you and I sit on a see-saw, our weights
and the weight of the wooden plank are loads; the upward contact force exerted by
the pin on the center of the plank is a reaction. A free-body diagram for the plank
includes the specified loads and the to-be-determined reaction.

Principle of transmissibility (applies to rigid bodies only): the acceleration and an-
gular acceleration of a rigid body are unchanged by replacing a given force F1 acting
at point A with a new force F2 acting at point B as long as forces A and B have the
same line of action and point in the same direction.

Concurrent forces have lines of action that intersect at a common point. The effects
on a rigid body are unchanged by replacing several concurrent forces with a single
resultant force. The resultant of several forces is the vector sum of those forces.

The moment of a force is engineers’ term for what physicists call torque. It is force
multiplied by perpendicular lever arm, with a sign given by the convention that
counterclockwise is positive and clockwise is negative. In 3 dimensions, a torque (or

moment) is given by the vector (“cross”) product ~τ = ~r × ~F and the right-hand
rule. You can’t define a moment (torque) without first defining a reference point,
also known as a pivot, or an axis, or an origin for a coordinate system. The vector ~r
in the expression ~r × ~F is measured with respect to that pivot point, i.e. the tail of
~r is at the pivot.

Varignon’s theorem: to compute the moment of a force, you can decompose the force
into components (having the same point of application) and sum (algebraically, i.e.
with proper signs) the moments of the components.

A couple is two forces that sum to zero (~F and −~F ) and have parallel (you might say
antiparallel) lines of action separated by a distance d. A couple will tend to cause
rotational acceleration but will not cause linear acceleration of a body. The moment
of a couple has magnitude Fd.

A force ~F acting on a rigid body can be moved to any given point of application A
(with a parallel line of action) provided that a couple ~M is added. The moment M of
the couple equals Fd⊥, where d⊥ is the perpendicular distance between the original
line of action and the new location A.

In the 2D plane, the three equations of statics are:
∑
Fx = 0,

∑
Fy = 0, and∑

	P M = 0, where P is a chosen pivot point for evaluating moments.

When engineers and architects say Free Body Diagram, they are referring to what
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Mazur calls an Extended Free Body Diagram. An EFBD starts with a cartoon-like
sketch of the body in question and indicates with an arrow each external force acting
on the body, carefully indicating the direction and the point of application of the
force. Often unknown reaction forces are drawn with a single slash through the
arrow. External moments (illustrated via types of connections) are indicated using
curved arrows. An unknown moment reaction is indicated using a single slash through
a curved arrow.

Support forces are often drawn as stereotyped pin (or hinge) supports and roller
supports. A pin can exert both horizontal and vertical support (reaction) forces but
cannot exert any moment (torque) about the pin axis. A roller can only exert a force
normal to the surface on which it rolls and cannot exert a moment. So a pin (or
hinge) support contributes two unknown reaction force components, while a roller
support contributes only one unknown reaction force component. A body that has a
pin support beneath one end and a roller support benath the opposite end is simply
supported. One pin and one roller support constitute 3 total unknown forces, which is
exactly the number of unknowns that the laws of statics in a 2D plane can determine.

Another type of connection, not illustrated in chapter 2, is a “built-in” connection,
which (in the 2D plane) can exert two forces and a moment. For an example, think
of how a lamppost is attached to the sidewalk. It resists motion along its axis, resists
motion parallel to the sidewalk, and also resists the toppling over of the lamppost,
i.e. it resists rotation about the point of connection.

A body on which more than three unknown forces are exerted is called statically
indeterminate. To solve a statically indeterminate system, you need to know how the
body deforms under the applied load.

(Onouye/Kane ch3: selected determinate systems)

The resultant force exerted on the end of a cable must be tangent to the end of the
cable.

A concentrated load has a point of application that can be represented as a single
point. For example, the weight of a single lead brick placed at the center of a long
beam. A distributed load is spread out over a wide area (usually indicated as force
per unit length on a 2D sketch). The most common symbol used for concentrated
(or “point”) loads is P . The most common symbol used for distributed loads is w,
though some books use ω.

For statics calculations of rigid bodies (but not for elastic calculations such as the
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deflection of beams!) a distributed load w can be replaced by the equivalent concen-
trated load P . The point of application of P is the centroid of w, and the magnitude
of P is the integral of w, i.e. the area under the w(x) curve,

∫
w(x) dx. Usually

this “integral” can be simply calculated using formulas for the area of a rectangle, a
triangle, a trapezoid, etc.

There are two ways to analyze a truss: one is the method of joints and the other is
the method of sections. Analysis of a truss assumes: (a) members (bars) are straight
line segments and can support only axial forces, i.e. forces parallel to the axis of
the bar; (b) all joints are pin connections, i.e. connections that can exert horizontal
and vertical forces but not moments about the pin; (c) the weight of the truss bars
themselves is usually neglected; (d) loads are applied to the truss at the pinned joints
only. A given bar is either in compression (the forces exerted on the ends of the bar
are trying to squish the bar along its axis) or in tension (the forces exerted on the
ends of the bar are trying to stretch the bar along its axis).

A necessary condition for a planar truss having J joints and B bars to be solvable
using the methods of statics is B = 2J − 3. Solving the truss involves finding B
unknown bar tensions/compressions plus 3 unknown support reactions (e.g. one pin
and one roller support). The method of joints will give us 2 equations per joint. So
we have 2J equations to determine B + 3 unknowns. Thus 2J = B + 3.

The method of joints is conceptually simple, but can be tedious. At each joint,
you apply the two force equations for static equilibrium:

∑
Fx = 0 and

∑
Fy = 0

(consider forces acting on the joint itself). There is no moment equation because all
forces at the joint have lines of action passing through the joint. I usually label the
support “reaction” forces e.g. RAx, RAy, RCy for reaction forces at joints A and C,
and then label the tension/compression of each bar as if every bar were in tension:
TAB, TBC , TAC for bars AB, BC, AC connecting joints A, B, C. In the end, you
will find TAB > 0 if bar AB is in tension and you will find TAB < 0 if bar AB is in
compression. To eliminate the need to solve large systems of simultaneous equations,
always start from a joint having at most two unknown forces; if you find a joint having
only one unknown force, so much the better.

In the method of sections you often (but not always) start by drawing an EFBD for
the truss as a whole and solving for the unknown support reactions; sometimes this
step is unnecessary. Then you draw a hypothetical line (or curve) that divides the
truss into two pieces; the line should pass through bars, not joints, and should cut
through no more than three bars whose forces are unknown. If there is a particular
bar whose tension/compression you want to find, be sure that your cut line passes
through that bar. You then draw an EFBD for either the right side or the left side
of the truss, including the forces exerted (by the invisible side of the truss) on the
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bars cut by the section line. Be careful with the directions: if the cut bar (let’s say
it’s bar AB) is assumed to be in tension, then the EFBD for the right side of the cut
includes TAB pointing (in general diagonally) to the left; alternatively the EFBD for
the left side of the cut would include TAB pointing (in general diagonally) to the right.
You want to draw the external forces exerted on the part of the truss whose EFBD
you have drawn. You then use the three equations for static equilibrium in a plane:∑
Fx = 0,

∑
Fy = 0, and

∑
	P M = 0, where the pivot point P is strategically

chosen so that the moment equation omits any forces that you do not care about.
(Forces whose lines of action pass through the pivot P will have zero lever arm and
will thus not appear in the moment equation.) You are summing forces and moments
acting on the visible (i.e. left or right) portion of the truss as a whole. Whereas the
method of joints found the conditions for each joint to be in equilibrium, the method
of sections finds the conditions for the visible half of the truss as a whole to be in
equilibrium. If you are only interested in finding a single bar force, and if you choose
just the right section, and if you choose just the right pivot point, you can often find
the desired force by solving only the moment equation. The method of joints is a
brute-force method that you can imagine programming a computer to do for you; the
method of sections requires some finesse.

Pinned frames and multiforce members are outside the scope of this course. Retaining
walls are also outside the scope of this course.

(Onouye/Kane ch4: load tracing)

You work your way from the top to the bottom. The roof supports only its own
weight. The top floor supports its own weight and the roof. The lower floor supports
its own weight and everything above it. It’s like finding all of the forces in a system
of three blocks stacked one on top of the other: draw an FBD for the top block first.
Then use what you know about the force exerted by the middle block on the top block
(plus Newton’s 3rd law) in drawing an FBD for the middle block. Then use what you
know about the force exerted by the lower block on the middle block (plus the 3rd
law) to draw an FBD for the lower block. (Notice that we usually use the opposite
procedure when objects are suspended, in a chain, from the ceiling by cables. In that
case it is easiest to work from the bottom up.)

The other key idea is tributary area: if the floor as a whole must support 2000 N/m2,
and if the floor joists are spaced 0.5 m apart, then you attribute to each floor joist
a distributed load w = 1000 N/m. Notice how we went from force per unit area to
force per unit length.
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(Onouye/Kane ch5: strength of materials)

Stress (usually denoted f in this book) is force per unit area. Strain (usually denoted ε
in this book) is (change in length) divided by (original length). So ε is a dimensionless
ratio. A graph of f vs ε shows many interesting features. One prominent feature is
the proportional region in which f = Eε, a result called Hooke’s Law, where E is
called Young’s modulus a.k.a. the elastic modulus or the modulus of elasticity. E is
the slope of the straight-line portion of the f vs ε graph.

Ductile materials give warning of impending failure, while brittle materials do not.

If you stretch an iron rod along its axis, it will become thinner in the direction
perpendicular (transverse) to its axis. So the axial strain is positive, but the transverse
strain is negative. Poisson’s ratio (symbol µ in this book, but ν is common elsewhere)
is µ = −εtransverse/εaxial. For most metals, 0.2 ≤ µ ≤ 0.4. So if you stretch a metal rod
to be 1% longer axially, it will become about 0.3% thinner in the transverse direction.

(Onouye/Kane ch6: cross-sectional properties)

The centroid, denoted (x, y), is the mass-weighted average of the centers-of-mass of
the constituent parts: x = (

∑
i ximi)/(

∑
imi), and y = (

∑
i yimi)/(

∑
imi), where m

stands for mass. To find the centroid of a continuous object, use an integral instead of
a sum: x = (

∫
x dm)/(

∫
dm), and y = (

∫
y dm)/(

∫
dm). If the material is of uniform

density and thickness, then you can use area A instead of mass m.

The centroid of a right triangle one side of which lies along the x axis (base b) and
one side of which lies along the y axis (height h) is (x, y) = (b/3, h/3). The area is of
course bh/2.

If a shape has a hole in it, you can “subtract” the hole from the shape by using a
negative area for the hole in the centroid calculation!

The second moment of area (which this book calls moment of inertia of an area, and
most engineers and architects simply call moment of inertia) is most commonly given
by Ix =

∫
y2 dA. Second moment of area is a difficult but important concept that

helps to explain why an I-beam has the shape it has (with material far away from the
y = 0 plane) and why a floor joist (“on edge”) is stiff but the same board used as a
plank (“on the flat”) is floppy. As we’ll see, a larger Ix makes a beam more stiff.

I avoid the phrase “moment of inertia” because it is ambiguous: most structures
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books use the phrase “moment of inertia” to refer to what I call “second moment of
area,” while most physics books use the phrase “moment of inertia” to refer to what
Mazur calls “rotational inertia.” Saying “rotational inertia” and “second moment of
area” is always unambiguous, while saying “moment of inertia” is often ambiguous.

For a beam of rectangular cross-section b×h and uniform density supporting a vertical
load, Ix = bh3/12. Imagine a wooden beam (like a “two by ten”) whose cross-section
has small dimension d and large dimension D (e.g. maybe d = 4 cm and D = 20 cm).

If you orient the beam “on edge”, like this , then you get Ix( ) = dD3/12. If you

orient the beam “on the flat,” like this , then you get Ix( ) = Dd3/12. The

ratio is Ix( )/Ix( ) = (D/d)2, which is 52 = 25 for the numbers given above. So
the same piece of wood is 25× stiffer (for these example numbers) when oriented as
a joist than it is when oriented as a plank.

Ix, which represents how far the material of a beam is spread out from the y = 0
plane, is called Ix because if you draw a cross-section of the beam, the y = 0 plane is
the x axis. So in cross-secton, Ix quantifies how far the material is from the x axis.

If a beam’s cross-section consists of several components having cross-sectional areas
A1, A2, A3, vertical centroids y1, y2, y3, and their own second moments of area Ix1,
Ix2, Ix3, then you can compute the second moment of area of the composite beam
using the parallel axis theorem: Ix = Ix1 + Ix2 + Ix3 +A1y

2
1 +A2y

2
2 +A3y

2
3. You could

use this, for example, to find Ix for an I-beam: . Using more general notation, the
parallel axis theorem reads Ix =

∑
i(Ixi + Aiy

2
i ). Warning: the way I’ve written this

expression, you must choose y = 0 to be the vertical centroid of the cross-section, i.e.
you must ensure that y = (

∑
i yiAi)/(

∑
iAi) = 0.

The radius of gyration rx =
√
Ix/A is the distance from the x axis at which you

could concentrate all of the beam’s material (symmetrically above and below) to get
the same second moment of area Ix. Notice that Ix = Ar2

x. The only place you are
likely to use the radius of gyration is in calculating a slenderness ratio of a column.
(Reading O/K ch9 on columns is an extra-credit option.)

(Onouye/Kane ch7: simple beams)

The most common support configurations for beams are simply supported (pin beneath
one end and roller beneath the other end), overhang (like simply supported, but ends
of beam extend beyond one or both supports), and cantilever (one “fixed” end, and
one “free” end).
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A load diagram is basically an EFBD of the beam. Remember to include the vertical
reaction forces exerted by the supports on the beam. Sometimes the load diagram is
represented as a graph of the distributed load w(x) (force per unit length). In load,
shear, and moment diagrams, the coordinate x measures distance along the length of
the beam, starting from the left end of the beam. It is confusing that this meaning
of the coordinate x is different from its meaning in chapter 6 — at least y will have
the same meaning here as in chapter 6.

The shear diagram, V (x), is drawn directly below the load diagram. V (x) has dimen-
sions of force (newtons, kilonewtons, pounds, kilopounds (“kips”)). If you section the
beam into two halves at a distance x from the left end of the beam, the function V (x)
represents the upward force exerted by the left side on the right side of the beam
at that section. Equivalently, V (x) = −

∫
w(x) dx. Also equivalently, V (x) is the

running sum of the loads and reactions (upward minus downward) to the left of (and
including) the section at x.

The moment diagram, M(x), is drawn directly below the shear diagram. M(x) has
dimensions of a bending moment (or torque), i.e. force×distance (newton-meters,
kilonewton-meters, foot-pounds, kilopound-feet). If you section the beam into two
halves at a distance x from the left end of the beam, the absolute value of the
function M(x) represents the magnitude of the moment (torque) that one side of
the beam exerts on the other side. But the sign convention is such that “a positive
moment makes the beam smile.” So if the beam curves upward (smiles) under load
(if d2Y/dx2 > 0) then M > 0, and if the beam curves downward (frowns) under load
(if d2Y/dx2 < 0) then M < 0. Mathematically M(x) =

∫
V (x) dx.

Since derivatives are less tricky than integrals, it may be worth remembering that
dM(x)/dx = V (x). The shear diagram V (x) is the derivative (the slope) of the
moment diagram M(x). For distributed loads, it is also worth remembering that
dV (x)/dx = −w(x). The distributed load w(x) is minus the slope of the shear
diagram V (x).

A free end, a pin-supported end, and a roller-supported end are all incapable of
supporting a bending moment. So for any of those end conditions, M(0) = 0 and
M(L) = 0. An exception is the cantilever beam, which has one free end and one fixed
end. The fixed end of a cantilever has M 6= 0. Since a cantilever always frowns under
a gravitational load, the fixed end has M < 0.

Sometimes one draws two additional curves beneath M(x). The slope of the loaded
beam, θ(x) = dY/dx, is given by EI θ(x) =

∫
M(x) dx, where E is Young’s modulus

(elastic modulus) and I is the second moment of area (called Ix in chapter 6). If
one draws θ(x), it is drawn directly below the M(x) diagram. The deflected shape of
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the loaded beam, Y (x) is given by Y (x) =
∫
θ(x) dx. If one draws Y (x), it is drawn

directly below the θ(x) diagram.

While you will probably never actually draw the θ(x) and Y (x) curves, a key takeaway
is that you integrate the M(x) curve two more times to get Y (x). That implies that if
M(x) is linear (a polynomial of order one), then the shape Y (x) of the deflected beam
is a polynomial of order three. And if M(x) is quadratic (a polynomial of order two)
then the shape Y (x) of the deflected beam is a polynomial of order four. So it turns
out that the maximum deflection of a beam of length L under a concentrated load is
usually proportional to L3, and the maximum deflection of a beam of length L under
a uniform distributed load is usually proportional to L4, just because of calculus.

(Onouye/Kane ch8: bending and shear stresses in beams)

The neutral axis of a beam’s cross-section lies along the vertical centroid y of the
cross-section. Extending the neutral axis along the length of the beam defines the
neutral surface. If certain conditions are met (the beam is initially straight, is of
constant cross-section, and is of uniform composition; the beam is elastic and has
equal elastic moduli in tension and compression; the beam is bent only with couples
(bending moments at the ends); the beam is not twisted), then the longitudinal
elements (fibers — easy to imagine for a wooden beam) of the neutral surface will be
neither in tension nor in compression; they will undergo no change in length.

For a “simply supported” beam (which makes a shape under load), longitudinal
fibers below the neutral surface are in tension (elongated), while fibers above the
neutral surface are in compression (shortened). For a cantilever (which makes a

shape under load), fibers above the neutral surface are in tension, while fibers
below the neutral surface are in compression. It helps to imagine a wooden beam
with fibers (grains) running along the axial length of the beam.

Let’s imagine an initially horizontal beam of length L0 bent into a shape by
applying a bending moment M at each end: counterclockwise at the left end and
clockwise at the right end. Fibers above the neutral axis (y > 0) will be lengthened
(L > L0) while fibers below the neutral axis (y < 0) will be shortened (L < L0).

A key idea is that we can approximate the deflected beam as an arc of a circle of
radius R, where the bending moment is inversely related to the radius of curvature
of the beam: M ∝ 1/R. The larger the bending moment, the tighter the circular
arc into which the beam bends. For a constant bending moment M , lines that are
initially vertical converge toward the center of the circle, as shown below.
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We can use similar triangles to argue that the longitudinal strain, δL/L0, is propor-
tional to the distance above the neutral surface. More precisely, ∆L/L0 = y/R.

Next, use the symbol e to denote the axial strain ∆L/L0, and use the symbol f
to denote stress, which is force/area. For an elastic material, f = eE, where E is
Young’s modulus. So we have y/R = ∆L/L0 = e = f/E. So the axial stress (force
per unit area) exerted by the fibers a distance y above the neutral axis is f = Ey/R.

Now, using the language of calculus, consider an infinitesimal fiber of area dA a
distance y above the neutral surface. Using a pivot along the neutral axis, the torque
(bending moment) exerted by the longitudinal fiber of area dA equals force times
lever arm. The force is dF = fdA (stress times area) and the lever arm is y. So the
infinitesimal bending moment exerted by this infinitesimal fiber is

dM = y dF = y fdA = y

(
Ey

R

)
dA =

E

R
y2 dA.

So the bending moment M exerted by a curved beam is

M =

∫
dM =

E

R

∫
y2 dA =

EI

R
(1)

where R is the curved beam’s radius of curvature, and I =
∫
y2 dA is the “second

moment of area” introduced in chapter 6.

Using f = Ey/R to eliminate R, we can also write

f = My/I, (2)

or using c to represent the most extreme value of |y| (for the fibers farthest from

the neutral surface), the maximum bending stress is fmax = Mc/I . After drawing
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the moment diagram M(x), you can use the maximum value of |M(x)| and your
knowledge of the beam cross-section to determine the maximum bending stress fmax,
which can be compared with the allowable stress Fallow for the material of which the
beam is composed.

Since I and c are just geometrical properties of the beam cross-section, their ratio is

given a name: S = I/c is called the section modulus , where I is second moment of

area (w.r.t. the neutral axis) and c is the distance from the neutral surface to the top
or bottom of the beam (whichever is larger, if the beam is asymmetric). We can then

write the bending stress in the extreme fibers as fb = M/S . Alternatively, if you

are working with material of a given allowable bending stress Fb and the maximum
(in absolute value) bending moment for your loading conditions is Mmax, then you
need to choose a cross-section for your beam whose section modulus is larger than

Srequired = Mmax/Fb . For standard beam shapes, values of section modulus S are

tabulated. The dimensions of section modulus are length3, e.g. cubic meters, cubic
centimeters, or cubic inches.

(Need diagram.) Imagine a fiber located a height y above the neutral surface. At
position x along the length of the beam, the axial (bending) stress in this fiber will be
fb = My/I, using equation (2). Because M(x) varies along the length of the beam,
this bending stress will vary with x:

dfb
dx

=
y

I

dM(x)

dx
=
y

I
V (x)

(Need a nicer diagram.) Now imagine the forces acting on a rectangular block of
beam that extends longitudinally from x to x + dx, extends vertically from y to c
(measured from the neutral surface, where c is the top surface of the beam), and
extends the entire width b of the beam cross-section. Since stress = force/area, each
force is the integral of stress over the corresponding area. The horizontal force acting
on the left surface of the block is

∫ c
y
fb(x) b dy. The horizontal force acting on the
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right surface of the block is
∫ c
y
fb(x+dx) b dy. Along the top surface there is no force,

as there is no material above the top of the beam. But acting horizontally along the
bottom surface of the rectangular block is the shear stress , fv. The corresponding
force is fv b dx. The horizontal forces on these three surfaces must sum arithmetically
to zero:

fv b dx =

∫ c

y

[fb(x+ dx)− fb(x)] b dy =

∫ c

y

[
dfb
dx

dx] b dy =

∫ c

y

[
y

I
V (x) dx] b dy.

We can cancel dx, and for the special case of a rectangular cross-section (so b is
independent of y) we can cancel b, replace c with h/2, and replace I with bh3/12:

fv =
V (x)

I

∫ h/2

y

y dy =
V

I

[
h2

8
− y2

2

]
=

12V

bh3

[
h2

8
− y2

2

]
=

3V

2A

[
1−

(
2y

h

)2
]

where A = bh is the area of the beam cross-section. The maximum shear stress is
3
2
V/A (for a rectangular cross-section) and occurs at the neutral surface (y = 0) at

the longitudinal position x where the shear force |V (x)| is largest — which usually
occurs at the supports.

To envision shear strain (which by Hooke’s law is proportional to shear stress), bend
a deck of cards into a shape and observe how each card slides against its
neighbors.

In many circumstances, building codes will specify the maximum allowable deflection
of a beam of length L as some small fraction of the length of the beam: for example,
an L/360 deflection limit would imply that a horizontal beam of length 3.6 m can
deflect no more than 1 cm vertically under load. We use the symbol ∆ to indicate the
vertical deflection of the beam. A positive value of ∆ points downward, in the −y
direction. We can consider the deflection ∆(x) as a function of horizontal position x
along the length of the beam, or we can consider the maximum deflection ∆max. We
want to be able to evaluate ∆max for a hypothetical beam under load and impose an
allowable deflection criterion, for example ∆max ≤ L/360.

Solving equation (1) for R, the radius of curvature of a loaded beam is R = EI/M .
The beam is straighter (larger R) when the elastic modulus E and second moment of
area I are larger; the beam curves more (smaller R) when the bending moment M is
larger. The radius of curvature R of a function y = f(x) is given in calculus by the
formula

1

R
=

y′′

(1 + (y′)2)3/2
≈ y′′.

We know that the second derivative of a function is related to its curvature: if y′′ =
0 then the function is a straight line (no curvature); if y′′ > 0 then the function
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has “concave up” curvature; and if y′′ < 0 then the function has “concave down”
curvature. In architectural structures, one deals with beams whose slope is very
small: |y′| � 1, meaning that the slope of the beam under load is much smaller than
one radian. (A radian is 57.3◦, which would be a very large slope for a deflected beam.)
So it is conventional to use the small-angle (|y′| � 1) approximation: y′′ ≈ 1/R.

In the small-angle approximation, the second derivative ∆′′(x) of the deflected beam
shape ∆(x) obeys the Euler-Bernoulli beam equation

−∆′′(x) =
1

R
=
M

EI
.

The minus sign is because ∆(x) increases in the −y direction. We can integrate the
bending-moment curve M(x) twice to get the deflected shape ∆(x) of the beam:

−∆(x) =
1

EI

∫
dx

∫
M(x) dx

Since the moment curve M(x) is usually a quadratic curve for a beam with a uni-
form distributed load w and is usually a piecewise linear curve for a beam with a
concentrated load P , it makes sense that ∆(x) is usually a fourth-order polynomial
for a uniformly loaded beam and is usually a cubic polynomial for a concentrated
load. The most common cases are tabulated in books and online references. For
example, a simply supported beam has ∆max = 5wL4/(384EI) for uniform load w
or ∆max = PL3/(48EI) for a concentrated load P at mid-span. A cantilever has
∆max = wL4/(8EI) for uniform load w and ∆max = PL3/(3EI) for concentrated
load P at the free end. You can look up many more specific cases.

Here’s where the crazy 5/384 comes from: A simply supported beam of length L
and uniform load w has shear curve V (x) = (1

2
L − x)w and bending moment curve

M(x) = (Lx− x2)w/2. Integrating twice,

∆(x) = − 1

EI

∫
dx

∫
M(x) dx = − w

2EI

(
Lx3

6
− x4

12
+ C1x+ C2

)
The boundary condition ∆(0) = 0 gives C2 = 0 and ∆(L) = 0 gives C1 = −L3/12. So

∆(x) = w
2EI

(
x4

12
− Lx3

6
+ L3x

12

)
. Plugging in x = L/2 (which is where ∆′(x) = 0) gives

∆max = 5wL4/(384EI). To get the two integration constants for a simply supported
beam, use ∆(0) = ∆(L) = 0. For a cantilever whose left end is fixed, the integration
constants would instead be given by ∆(0) = 0 and ∆′(0) = 0.

Beam design criteria usually include the following:
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• Axial stress in the extreme fibers of the beam (farthest from the neutral surface)
must be smaller than the allowable bending stress, Fb, which depends on the
material (wood, steel, etc.) Maximum bending stress happens where bending
moment |M(x)| is largest.

• Shear stress, in both y (“transverse”) and x (“longitudinal”) directions, must be
smaller than the allowable shear stress Fv, which also depends on the material
(wood, steel, etc.). Shear stress is maximum where |V (x)| is largest, and is
largest near the neutral surface.

• The above two are “strength” criteria. A third condition is a “stiffness” cri-
terion: The maximum deflection under load must satisfy the building code:
typically ∆max < L/360, though in some cases the denominator is smaller, e.g.
120, 180, 240. For a uniform load, the maximum deflection occurs farthest away
from the supports. If deflection is too large, plaster ceilings develop cracks, and
floors feel uncomfortably bouncy or sloped.

• Onouye/Kane also mention buckling as a beam failure mode. For a simply
supported beam, the top is in compression while the bottom is in tension; vice-
versa for a cantilever. In very deep beams (i.e. very tall in cross-section),
the compression side can buckle or deflect sideways. Wood framing addresses
this issue with sheathing (a.k.a. furring or strapping) nailed at close spacing
perpendicular to the floor joists and solid blocking to prevent buckling at the
ends. In a very deep I-beam, the flange on the compression side is susceptible
to buckling.

(Onouye/Kane ch9: columns)

O/K ch9 is an extra-credit chapter. I will eventually summarize its key results here.

(Chapter 13: gravity) (Chapter 13 is optional/XC this year)

Gravity:

F =
Gm1m2

r2

where ~F points along the axis connecting m1 to m2.

G = 6.67× 10−11 N m2

kg2
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is a universal constant — the same on Earth, on Mars, in distant galaxies, etc.

g = 9.8 m/s2 =
GMe

R2
e

shows that an apple falling onto Newton’s head results from the same force that
governs the motion of the Moon around Earth, Earth around the Sun, etc.

For an orbit, gravity provides the centripetal force, so

mv2

R
=
GMm

R2

Gravitational potential energy for objects 1 and 2 is

U = −Gm1m2

r
(note the sign)

which → 0 as r →∞. The objects are bound if K + U < 0.

If K + U ≥ 0, they escape each other. They just barely escape if K + U = 0

1

2
mv2

escape =
GmM

R

in which case K → 0 when R→∞.

G.P.E. of e.g. a spacecraft of mass m in the field of two large objects (e.g. earth and
moon) of mass M1 and M2:

U = −
(
GM1m

RM1,m

+
GM2m

RM2,m

)

For a central force that goes like F ∝ 1/R2, the forces from a uniform spherical shell
add (if you’re outside the shell) up to one force directed from the center of the shell.
So a rigid sphere attracts you as if it were a point mass.

If you’re inside the shell, the sum of the forces adds up to zero.

(Chapter 15: periodic motion)

Oscillations (mostly illustrate using mass and spring). Combining F = ma with
F = −kx, we get mẍ = −kx. (A dot is shorthand for derivative with respect to
time.) Using ω =

√
k/m, you can rewrite as ẍ = −ω2x, which has solution

x = A cos(ωt+ φ), vx = ẋ = −ωA sin(ωt+ φ)
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You can also write it in terms of frequency f , using ω = 2πf :

x = A cos(2πf t+ φ), vx = −2πfA sin(2πft+ φ)

where f is frequency (cycles per second) and ω is “angular frequency” (radians per
second). When a frequency is given in Hz (hertz), it always means f , not ω. The A
above middle C on a piano has frequency f = 440 Hz, and the buzzing you hear from
electrical appliances is 60 Hz (or a small-integer multiple, e.g. 120 Hz).

So frequency is f = ω
2π

(how many times the thing vibrates per second), period is
T = 1

f
= 2π

ω
(how many seconds elapse per vibration). The maximum displace-

ment is amplitude A, measured in meters. The maximum speed is ωA (units are
meters/second). The initial phase, φ, tells you where you are in the oscillation at
t = 0. If at t = 0 you have x > 0 but vx = 0, then φ = 0. If at t = 0 you have vx > 0
but x = 0, then φ = π/2 (90◦). The energy is K + U = 1

2
mω2A2.

For a pendulum, you get θ = A cos(ωt + φ), with ω =
√
g/`. This requires two

approximations: first, that θ is small enough that sin θ ≈ θ; second, that the mass is
concentrated at a point at the end of the string, i.e. that the shape of the mass does
not contribute to the rotational inertia of the pendulum.

If the second approximation does not hold (e.g. the rod is about as heavy as the mass
on the end), then you have a “physical pendulum” with ω =

√
mg`cm/I, where `cm

is the distance from the pivot to the CoM, and I is the rotational inertia about the
pivot (not about the CoM).

For damped oscillations, the energy decays away with a factor e−t/τ , where the sym-
bol τ in this case means “decay time constant,” (not torque!). The quality factor
Q = 2πfτ tells you how many oscillation periods it takes for the oscillator to lose a
substantial fraction (1− e−2π ≈ 99.8%) of its stored energy.

For two springs connected in parallel (side-by-side), k = k1 + k2. For two springs
connected in series (end-to-end), 1

k
= 1

k1
+ 1

k2
, or equivalently k = k1k2

k1+k2
.

Waves (not until spring semester)

Wavelength λ, frequency f , and speed c of wave propagation are related by

c = λf

For transverse waves on a taut string of mass per unit length m/L, speed c of wave
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propgation is

c =

√
T

m/L

Sound

For waves that spread out in three dimensions without reflection or absorption, in-
tensity I at distance r is given in terms of source power P by

I =
P

4πr2

Intensity level, β, of sound (in decibels) is given by

β = 10 dB log10

(
I

I0

)
where I0 = 10−12 W/m2 is the threshold of human hearing and log10 means taking
the base-ten logarithm.

Speed of sound in air is csound =
√
B/ρ, or 343 m/s at 20◦C and 331 m/s at 0◦C,

where B is the bulk modulus and ρ is the density (mass/volume).

For observer moving away from (toward) stationary source, Doppler-shifted frequency
is (use upper sign for “away from” and lower sign for “toward”)

fobserved = femitted

(
1∓ vobserver

csound

)
For source moving away from (toward) stationary observer,

fobserved =
femitted

1± vsource/csound

Angle of shock wave for sonic boom is given by sin θ = c/v.

Light

Angle of incidence (w.r.t. surface normal) equals angle of reflection. Incident ray,
reflected ray, refracted ray, and surface normal all lie in a plane.

Speed of light in vacuum: c = 299792458 m/s ≈ 3.00× 108 m/s. Speed of light is c/n
in medium with index of refraction n.
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For geometrical (ray) optics, light obeys principle of least time, which is also known
as Fermat’s principle.

Snell’s law: n1 sin θ1 = n2 sin θ2

Lens & mirror summary (light always enters from LHS):

converging lens f > 0 di > 0 is RHS 1
f

= (n− 1)
(

1
R1

+ 1
R2

)
diverging lens f < 0 di > 0 is RHS 1

f
= (n− 1)

(
1
R1

+ 1
R2

)
converging mirror f > 0 di > 0 is LHS f = R/2
diverging mirror f < 0 di > 0 is LHS f = −R/2

Horizontal locations of object, image (beware of sign conventions!):

1

do
+

1

di
=

1

f
⇒ di =

dof

do − f

Magnification (image height / object height):

m =
hi
ho

= − di
do

=
f

f − do
Lenses: R1,2 > 0 for “outie” (convex), < 0 for “innie” (concave).

Real image: di > 0. Virtual image: di < 0. Real image means light really goes there.
Virtual: rays converge where light doesn’t go.

Lens maker’s equation (usually n0 = 1 for air; flat surface R =∞):

1

f
=

(
n

n0

− 1

)(
1

R1

+
1

R2

)

Focusing “power” (in diopters: 1 D = (1 m)−1) for a lens is 1/f .

Brewster’s angle (reflected light is polarized if θi > θB): θB = arctan(n2/n1)

For a thin film surrounded by air (e.g. soap bubble), a film of thickness λ/4n will have
maximum reflection for normal incidence, where n is the film’s index of refraction.

Rayleigh criterion: a lens (or other aperture) of diameter D can resolve angles no
smaller than

θmin =
1.22 λ

D
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Visible light: λred ≈ 630 nm, λgreen ≈ 540 nm, λblue ≈ 450 nm, λviolet ≈ 380 nm.

For a two-lens telescope, where the objective lens and the eyepiece have focal lengths
fo and fe, respectively, the magnification is M = −fo/fe.

When monochromatic light passes through two narrow slits that are separated by
distance δ, and is viewed on a screen at a large distance L, the separation ∆x between
adjacent maxima in the interference pattern is ∆x = λL/δ. Equvalently, the angle θ
between adjacent maxima is given by sin θ = λ/δ. Notice that ∆x/L ≈ sin θ.

Fluids

pressure: P = F/A. 1 Pa = 1 N/m2. 1 atm = 101325 Pa = 760 mm-Hg.

Pascal’s principle: if an external pressure is applied to a confined fluid, the pressure
at every point within the fluid increases by that amount.

Archimedes’s principle: the buoyant force on an object immersed (or partially im-
mersed) in a fluid equals the weight of the fluid displaced by that object.

Equation of continuity: ρ1A1v1 = ρ2A2v2

Bernoulli’s equation (neglects viscosity, assumes constant density):

P1 +
1

2
ρv2

1 + ρgy1 = P2 +
1

2
ρv2

2 + ρgy2

Viscosity (symbol η, unit = Pa ·s), where F is the frictional force between two parallel
plates of area A, separated by distance d, moving at relative velocity v, is defined by

F =
ηAv

d

Reynolds number Re indicates presence of turbulence. For Re < 2300, flow is laminar.
For Re > 4000, flow is turbulent. For 2300 < Re < 4000, turbulent flow is possible
(“onset of turbulence”). For average fluid speed v in a cylinder of radius r,

Re =
2rρv

η

Poiseuille’s equation for volume rate of flow Q (unit = m3/s) for a viscous fluid un-
dergoing laminar flow in a cylindrical tube of radius R, length L, end-to-end pressure
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difference P1 − P2, is

Q =
πR4 (P1 − P2)

8ηL

Surface tension γ = F/L is force per unit length, tending to pull the surface closed.
You can also regard γ as the energy cost per unit increase in surface area.

Useful tables: densities (Giancoli Table 10-1, page 276); viscosities (Mazur Table 18-
1; or Giancoli Table 10-3, page 295); surface tensions (Mazur Table 18-2; or Giancoli
Table 10-4, page 297).

Kinetic theory, heat, thermodynamics

Atomic mass unit: 1 u = 1.66 × 10−27 kg. Proton mass: mp = 1.6726 × 10−27 kg.
Neutron mass: mn = 1.6749 × 10−27 kg. As you saw if you did the extra-credit
reading on Special Relativity (Einstein’s E = mc2, etc.), the mass of a nucleus is
slightly smaller than the sum of the masses of its protons and neutrons, because of
the negative binding energy that holds the nucleus together. So you can argue that
mass is really just one more form of energy! The atomic mass unit u is defined to be
1
12

of the mass of a 12C nucleus, which is a bound state of 6 protons and 6 neutrons.

Avogadro’s number: NA = 6.022 × 1023. Just as 12 of something is called a dozen,
6.022 × 1023 of something is called a mole. The mass of a mole of protons is
1.007 grams, i.e. almost exactly a gram. A mole of atomic mass units is NA × 1 u =
1.0000 g = 1.0000× 10−3 kg.

A Fahrenheit degree is 5
9

of a Celsius degree, and 0◦C is 32◦F. According to the
Wikipedia, the Fahrenheit scale is considered obsolete everywhere except the United
States, the Cayman Islands, and Belize.

The Kelvin scale measures absolute temperature. A change of one Kelvin is the same
as a change of 1◦C, but with an offset such that 0◦C = 273.15 K.

Thermal expansion: ∆L = αL0∆T , ∆V = βV0∆V . Typically β = 3α. (Here α is
the linear coefficient of thermal expansion, and β is the volume coefficient of thermal
expansion.)

Thermal stress (if ends are not allowed to move when object is heated or cooled):
F/A = Eα∆T

Ideal gas law (works where density is low enough that the gas molecules interact
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primarily with the walls of the container, and not so much with one another):

PV = nRT

where T is in Kelvin and n is in moles. If you measure P in Pa (same as N/m2)
and V in m3, then R = 8.315 J

mol·K . If you measure P in atm and V in liters, then
R = 0.0821 L·atm

mol·K . A mol of ideal gas at STP (1 atm, 0◦C) has a volume of 22.4 L.

The volume per mole of ideal gas at temperature T at 1 atm is

V

n
=
RT

P
=

(0.0821 L·atm
mol·K)T

1 atm
= (22.4  L)

(
T

273 K

)
= (0.0224 m3)

(
T

273 K

)

If you measure N in molecules (not moles), P in N/m2, V in m3, and T in Kelvin,
then PV = NkBT , where kB = 1.38 × 10−23 J/K is Boltzmann’s constant. The
root-mean-squared speed of a gas molecule, vrms is given by 1

2
mv2

rms = 3
2
kBT , with T in

Kelvin. So the average K.E. of a gas molecule is proportional to absolute temperature.

Because of the random motions of molecules, a concentrated blob of ink, spray of
perfume, etc., will diffuse from a region of high concentration to a region of low
concentration. The number per unit time of molecules diffusing through area A is
dN
dt

= AD dC
dx

, where C is the concentration of molecules per unit volume, and D is
called the diffusion constant (unit is m2/s).

Increasing the temperature of a given mass of a given substance requires heat Q =
mc∆T , where c is the specific heat capacity of the substance. (Mind the sign: you
get heat back out if you decrease the temperature.)

Melting or evaporating a mass m of a substance requires heat Q = mL, where L is
the latent heat (of fusion for melting, of vaporization for boiling). (Mind the sign:
you get heat back out for condensation or for freezing.)

Remember that energy is conserved (always, now that we know how to account for
thermal energy). Work W represents the transfer of mechanical energy into (W > 0)
or out of (W < 0) a system. Heat Q represents the transfer of thermal energy into
(Q > 0) or out of (Q < 0) a system. If we call the internal energy (including thermal
energy) of the system U , then

∆U = Win +Qin −Wout −Qout

is just the statement that energy is conserved.
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Heat (symbol Q, standard (S.I.) unit = joules) is the transfer of thermal energy
from a warmer object to a cooler object. Heat can be transferred via conduction,
convection, and radiation.

Conduction is the incoherent movement (similar to diffusion) of thermal energy
through a substance, from high T to low T . The heat conducted per unit time is

dQ

dt
=
k A ∆T

`
=
A ∆T

R

where k is thermal conductivity, A is cross-sectional area (perpendicular to direction
of heat flow), ` is the thickness (parallel to direction of heat flow), and ∆T is the
temperature difference across thickness `. We can also define R-value, R = `/k,
and then use the second form written above. Be careful: if an R-value is given in
imperial units (foot2 · hour · ◦F/Btu), you must multiply it by 0.176 to get S.I. units
(m2 ·K/W).

Convection means e.g. I heat some water in a furnace, then a pump mechanically
moves the hot water to a radiator: it is the transfer of thermal energy via the coherent
movement of molecules. Convection also occurs if I heat some air, which then becomes
less dense and rises (because of buoyancy, which is caused by gravity), moving the
thermal energy upward. “Heat rises” because increasing temperature usually makes
things less dense, hence more buoyant.

Radiation is the transfer of heat via electromagnetic waves (visible light, infrared,
ultraviolet, etc.), which can propagate through empty space. For a body of emissivity
e (0 ≤ e ≤ 1, 0 = shiny, 1 = black) at temperature T (kelvin), with surface area A,
the heat radiated per unit time is

dQ

dt
= eσAT 4

where σ = 5.67× 10−8 W
m2·K is the Stefan-Boltzmann constant.

Useful tables: expansion coefficients (Giancoli Table 13-1, page 388); saturated vapor
pressure of water (Giancoli Table 13-4, page 406); specific heat capacities (Giancoli
Table 14-1, page 421); latent heats (Giancoli Table 14-3, page 425); thermal conduc-
tivities (Giancoli Table 14-4, page 429).

Useful tables for elasticity, etc.: elastic modulus (Giancoli Table 9-1, page 254); ulti-
mate strength (Giancoli Table 9-2, page 258).

Work done BY a gas is Wout =
∫
P dV . Work done ON a gas is Win = −

∫
P dV .

Mazur’s convention is W = −
∫
P dV , i.e. if you don’t specify “in” or “out” then W

means Win −Wout.
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The state (P, V, T, S, energy) of a steady device is the same at the end of each
cycle. Since the energy is unchanged after going around one complete cycle, all of the
changes in energy must add up to zero, so then

Win +Qin = Wout +Qout

If a system transfers thermal energy Qout to its environment at constant temperature
Tout, the change in the entropy of the environment is ∆Senv = Qout/(kBTout). (This is
using Mazur’s definition, S = ln Ω, for entropy, which is usually called the “statistical
entropy.” Most other books instead use S = kB ln Ω, which is called the “thermody-
namic entropy.” Books that use S = kB ln Ω will instead write ∆Senv = Qout/Tout.)

If a system absorbs thermal energy Qin from its environment at constant temperature
Tin, the change in the entropy of the environment is ∆Senv = −Qin/(kBTin).

If thermal energy is transferred at non-constant temperature, you can use calculus to
figure out ∆S =

∫
1
T

dQ. If thermal energy Q flows from system A at temperature
TA to system B at temperature TB (and without any mechanical work done on or by
either system), then ∆SA = −Q/(kBTA), and ∆SB = +Q/(kBTB).

If N molecules of ideal gas go from an equilibrium state with temperature Ti and
volume Vi to a new equilibrium state with temperature Tf and volume Vf , the change
in entropy of the gas is (where CV is heat capacity per particle at constant volume)

∆Sgas = Sf − Si =
NCV
kB

ln(Tf/Ti) +N ln(Vf/Vi)

The efficiency of a heat engine is

η =
Wout −Win

Qin

=
Qin −Qout

Qin

≤ Tin − Tout

Tin

In the special case of an ideal (or Carnot, or “reversible”) heat engine, the “≤”
becomes “=” (which you can prove by using ∆Senv = Qout

kBTout
− Qin

kBTin
= 0).

A heat pump moves thermal energy from a “low” temperature TL to a “high” tem-
perature TH . The coefficient of performance (COP) for heating is (note that “out”
means the output of the heat pump, not the outdoors)

COPheating =
Qout

Win −Wout

=
Qout

Qout −Qin

≤ Tout

Tout − Tin

=
TH

TH − TL
where the “≤” is “=” for an ideal heat pump. For COP for cooling is

COPcooling =
Qin

Win −Wout

=
Qin

Qout −Qin

≤ Tin

Tout − Tin

=
TL

TH − TL
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where once again “≤” becomes “=” if ∆Senv = 0 for a complete cycle.

Electricity

The electric charge on a proton is +e = 1.602× 10−19 C (C = coulomb). The electric
charge on an electron is −e.

Coulomb’s law: charged particle B exerts electrostatic force ON charged particle A:

~F elec
B on A = − 1

4πε0

qAqB
r2
AB

r̂A→B =
qAqB
4πε0

~rA − ~rB
|~rA − ~rB|3

where I used r̂A→B = − ~rA−~rB
|~rA−~rB |

. The constant is ε0 = 8.854×10−12 C2

N·m2 , or equivalently

k =
1

4πε0
= 8.988× 109 N ·m2

C2

The force is repulsive (force on A points away from B) if the two charges have the
same sign, and is attractive (force on A points toward B) if the two charges have
opposite signs.

The electrostatic force exerted by N other particles ON particle A is

~Fon A =
N∑
i=1

qAqi
4πε0

~rA − ~ri
|~rA − ~ri|3

Writing out the components of the force (on A) for clarity:

Fx =
∑
i

qAqi
4πε0

xA − xi
((xA − xi)2 + (yA − yi)2 + (zA − zi)2)3/2

Fy =
∑
i

qAqi
4πε0

yA − yi
((xA − xi)2 + (yA − yi)2 + (zA − zi)2)3/2

Fz =
∑
i

qAqi
4πε0

zA − zi
((xA − xi)2 + (yA − yi)2 + (zA − zi)2)3/2

The electric field ~E at a point ~r = (x, y, z) is the electrostatic force-per-unit-charge

( ~E = ~F/q) that a test charge q would experience if placed at position ~r. The electric
field created by N particles is

~E(~r) =
N∑
i=1

qi
4πε0

~r − ~ri
|~r − ~ri|3
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or writing out the components,

Ex(x, y, z) =
N∑
i=1

qi
4πε0

x− xi
((x− xi)2 + (y − yi)2 + (z − zi)2)3/2

Ey(x, y, z) =
N∑
i=1

qi
4πε0

y − yi
((x− xi)2 + (y − yi)2 + (z − zi)2)3/2

Ez(x, y, z) =
N∑
i=1

qi
4πε0

z − zi
((x− xi)2 + (y − yi)2 + (z − zi)2)3/2

The electric field ~E(~r) due to a charge q placed at the origin (0, 0, 0) is

~E(~r) =
q

4πε0 r2
r̂

where r̂ is the unit vector pointing radially away from the origin.

Note that for a point that is outside of a uniform spherical shell of charge (“shell”

= the thin surface of a sphere), ~E is the same as if all of the charge were at the
center of the sphere. A uniform spherical shell of radius R contributes nothing (zero)
to the electric field for r < R. (You may remember an analogous result for gravity:
http://en.wikipedia.org/wiki/Shell theorem ) Using Gauss’s law is the easiest
way to show that this is true.

Gauss’s law states that the electric flux (the “flow” of ~E field lines) through the closed
surface of an arbitrary volume is

ΦE ≡
∫

surface

E⊥ dA = Qenclosed/ε0

To calculate ΦE, you sum up the area of the enclosing surface, weighting each area
by the normal component (i.e. ⊥ to the surface) of ~E. Gauss’s law is most useful if

you can choose each face of your enclosing surface so that either (a) ~E is ‖ to the face

(in which case the flux through that face is zero), or (b) ~E is constant and ⊥ to the
face, in which case you just multiply the area of the face by E (or −E) for outward

(or inward) pointing ~E.

Below are one figure and one “procedure box” from Eric Mazur’s chapter 24, describ-
ing how to use Gauss’s law.
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The electric field lines from a point charge spread out in three dimensions. You can
use Gauss’s law to show that at a distance r from a single point charge q, the electric
field has magnitude E(r) = q/ε0

4πr2
, which is the result you knew already.

The electric field lines from an infinitely long line of charge spread out in only two
dimensions. You can use Gauss’s law to show that at a distance r from a line charge
whose charge-per-unit-length is q/L, the electric field has magnitude E(r) = q/ε0

2πrL
,

i.e. the field falls off only as 1/r.

The electric field lines from an infinitely wide plane of charge do not spread out at all.
(Since there is only one dimension available for getting away from the + charge, they
must remain parallel.) You can use Gauss’s law to show that at a distance r from
a plane charge whose charge-per-unit-area is q/A, the electric field has magnitude

E(r) = q/ε0
2A

, i.e. the field has constant magnitude q
2Aε0

. (If the plane of charge sits on
only one surface of a conductor, as in a parallel-plate capacitor, then there is no factor
of two, because the field is nonzero only between the two plates: then E = q

ε0A
.)

Electric potential (a.k.a. voltage) is analogous to the elevation on a topo map.
Electric potential is potential energy per unit charge for a small test charge q

V = U/q

The work that you need to do to move a charge q across a potential difference ∆V
(like pushing a ball up a hill, but mind the sign of q) is

W = q∆V

The electric field always points in the “downhill” direction: the direction in which V
decreases most rapidly.

Ex = −dV

dx
, Ey = −dV

dy
, Ez = −dV

dz

So I can measure the strength of an electric field equivalently as newtons
coulomb

or volts
meter

.

(These two units are equal.) The electric field ~E measures

• force per unit charge

• how rapidly potential varies with position

• direction in which potential decreases most rapidly
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If the point (x, y, z) is a distance di away from each of N point charges qi, then (taking
V = 0 at r =∞, and integrating −E(r) from r =∞ to r = di)

V (x, y, z) =
N∑
i=1

qi
4πε0di

where di =
√

(x− xi)2 + (y − yi)2 + (z − zi)2.

Energy units useful for connecting physics with chemistry: since e = 1.602×10−19 C,
an electron volt is 1 eV = 1.602 × 10−19 J. And since a mole is 6.022 × 1023 of
something, 1 kJ/mol = (1000 J)/(6.022× 1023) = 1.66× 10−21 J.

When you accumulate electric charge Q on a single conductor (taking V = 0 at
r =∞), the potential V of the conductor is proportional to the accumulated charge
Q. When you accumulate charge +Q on one conductor and charge −Q on a nearby
conductor, the potential difference ∆V between the two conductors is proportional
to Q. In either case, the constant of proportionality is a geometrical factor called the
capacitance:

Q = CV

Usually you figure out C by drawing a picture of the conductor(s) with charge Q in

place, then using Gauss’s law to figure out ~E, then using Ex = −dV/dx, etc., and
integrating to find V . Then you divide to get C = Q/V .

For a single conducting sphere of radius R, you find C = 4πε0R. For two parallel
plates of area A separated by distance d, you find C = ε0A/d. If you understand
Gauss’s law, it can be fun to derive that for two long coaxial cylinders of length L
and radii r1 and r2, the capacitance is C = 2πε0L/ ln(r2/r1).

The potential energy stored in a capacitor is U = 1
2
CV 2 = 1

2
Q2/C

If you stick an electrical insulator (called a dielectric) between the plates of a capac-
itor, the factor ε0 in the capacitance is replaced by ε = Kε0, where K is known as
the dielectric constant. The way this comes about is that the + and − charges
inside the dielectric material separate just a tiny bit, responding in proportion to the
external electric field. They are only able to move maybe a few angstroms in response
to the external field, so their movement only partially cancels out ~E. This partial
cancellation replaces ~E inside the dielectric with ~E/K. So then when you compute
∆V for a given Q, you get a number that is smaller by a factor of K. Smaller ∆V
for a given K means that C → KC.

Ohm’s law for a resistor: ∆V = IR, where ∆V is the voltage drop across the
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resistor (the potential difference between the two terminals of the resistor), and I is
the current through the resistor.

For a resistor of length L and constant cross-sectional area A, made from material of
conductivity σ, the resistance is R = L/(σA). Or in terms of resistivity ρ = 1/σ,
R = ρL/A.

Suppose that a direct current I flows through a circuit element, from terminal a to
terminal b, and that the volage drop across that circuit element is ∆V = Vb−Va > 0.
Then the power dissipated by (or perhaps stored in or otherwise consumed by)
that circuit element is I∆V . (In the case of alternating current, you can often just
replace I and ∆V by their rms values and use Irms∆Vrms for power, but in general you
need to account for the possibility that I and ∆V are out of phase with one another
by some angle φ, in which case the power is Irms∆Vrms cos(φ). In the unlikely event
that you want the details behind this, see Mazur’s chapter 32—which we won’t have
time to cover, but you’re welcome to read it for extra credit.)

Combining this last result with Ohm’s law, the power dissipated in a resistor is
P = I2R = V 2/R.

Junction rule for circuits in steady state (charge conservation):
∑
Iin =

∑
Iout.

This is like saying that per unit time, the number of cars entering an intersection
equals the number of cars leaving the intersection—which is true for a steady flow of
traffic.

Loop rule for circuits (energy conservation):
∑

∆V = 0. As you go around the
loop, add up the voltage gains: ∆V = −IR for each resistor, and ∆V = +E for
each battery, if your loop exits the battery at the (+) terminal and re-enters the
battery at the (−) terminal. (If your loop goes through the battery in the opposite
direction, then ∆V = −E .) This is like saying that if I go backpacking for a few days
in Yosemite, taking a “loop” route that begins and ends at the same trail head, the
sum of my uphill ascents equals the sum of my downhill descents, because I end at
the same elevation at which I began.

A consequence of the above two rules (you can draw series and parallel circuits, find
the current drawn from a battery of given E , and find Rcombined = E/Ibattery) is that
the combined resistance R for two resistors R1 and R2 in series is R = R1 + R2.
Another consequence is that in parallel, 1/R = 1/R1 + 1/R2.

Using the results from the previous paragraph, you can show that putting n copies
of the same resistor R1 in series gives you R = nR1. Putting n copies of the same
resistor R1 in parallel gives you R = R1/n.
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Magnetism

Opposite poles of magnets attract; like poles repel. So N attracts S; N repels N.

Magnetic field lines flow out of the north pole of a magnet and back into the south
pole. (Inside the magnet, the field lines continue from S to N, completing the loop.
Because magnetic charges (“magnetic monopoles”) don’t exist, magnetic field lines
always form closed loops.) So the magnetic field outside of a bar magnet points away
from the north pole and toward the south pole.

The arrow of a compass is the north pole of a magnet. It actually points toward the
south magnetic pole of the earth, which is located near the geographic north pole,
confusingly enough. (Because opposite poles attract, there’s no way to avoid this,
alas.) If you put a compass into a magnetic field, the arrow (with the “N” marking)

will line up with the ~B field direction (or for a flat compass, the projection of the ~B
field direction into the plane of the compass).

~B field lines encircle an electric current (or a charged particle in motion). If you orient
your right thumb in the direction in which positive current flows (or positively charged

particles move), the fingers of your right hand will curl around in the direction of ~B.

The right-hand rule is usually all you need to figure out the direction of ~B. For those
rare cases (not in this course) in which you need to figure out the magnitude, use
Ampere’s law: going around a closed loop, sum up the distance traveled times the
component of ~B in the direction of travel. This sum (or integral) equals the constant
µ0 = 4π × 10−7 T/(A ·m) times the net current enclosed by your Amperian loop.∮

closed
loop

~B · d~̀= µ0 Ienclosed
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Using Ampere’s law, you can derive the magnitude of ~B at distance r around a long,
straight wire carrying current I to be B = (µ0I)/(2πr).

More importantly, Ampere’s law also tells you that the magnitude of ~B inside a long
solenoid (a cylinder with wire wrapped around it, the most common shape for an
electromagnet) is B = (N/L)µ0I, where N/L is the number of turns of wire per unit
length and I is the current flowing in the wire.

The force on a moving charged particle due to magnetic field ~B is ~F = q~v× ~B, where
q is the particle’s electric charge and v is the particle’s velocity. The magnitude of ~F
is |~F | = qvB sin θ, where θ is the angle between ~v and ~B. The force is largest when

~v and ~B are perpendicular and is zero when ~v and ~B are parallel or antiparallel.
You can figure out the direction of ~F for positive q by first pointing the fingers of
your right hand in the ~v direction, then curling them in the ~B direction. Your right
thumb will then point in the ~F direction. (For negative q, your right thumb winds

up pointing in the −~F direction.) The magnetic force is always perpendicular both

to ~v and to ~B.

An equivalent version of the above force law is more useful for calculating the force on
a current-carrying wire in a magnetic field: ~F = I~̀× ~B. You use the same right-hand
rule as in the previous paragraph, with the direction of positive current instead of the
velocity. If the current flow is perpendicular to ~B, then the magnitude of the force is
F = I`B. Or if the current flow makes an angle θ with ~B, then F = I`B sin θ.

The magnetic flux through a surface is of area A is ΦB = BA cos θ, where θ is the
angle between the ~B field lines and the surface normal. (The “surface normal,” which
you may encounter in computer graphics or CAD software, is a vector that is locally
perpendicular to the surface; for example, the surface normal of a spherical surface
always points radially.) So the flux is maximum when ~B is normal (perpendicular) to

the surface, and is zero when ~B is parallel to the surface. If the surface is not flat or
~B is not constant, you divide the surface up into many small pieces and add them. So
more formally ΦB =

∫
~B · d ~A, where ~A points along the surface normal. Intuitively,

you can think of ΦB as proportional to the net number of ~B field lines that pierce
the surface in the “outward” direction (you have to call one side of the surface the
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outside and one the inside, and count up outgoing minus ingoing field lines).

A closed loop of wire defines a surface. (Think of the surface of the soap bubble
that would form with the loop as a frame.) When the magnetic flux through that
surface changes, an emf (i.e., a voltage) is induced around the loop: E = −dΦB/dt.

You can change ΦB by changing the magnitude of ~B, by changing the direction of
~B, or by changing the orientation of the loop. The minus sign reminds us that the
induced current flows in the direction that creates a ~B field that opposes the change
in magnetic flux. So if the loop is in the xy plane, and ~B points along the z axis
and is increasing, then E induces a clockwise current (as seen from +z), because a
clockwise current creates a magnetic field pointing along in the −z direction, which
is opposite d ~B/dt. (See “Faraday’s law” and “Lenz’s law” in the book.)

If the wire is coiled around so that the ~B field lines pass through the coil N times,
then ΦB is N times as large.

In a transformer, the primary coil is connected to a source of AC voltage Vp, and the
secondary coil is connected to a load to which you want to supply voltage Vs. Then
Vs/Vp = Ns/Np, where Ns is the number of times the secondary coil is wound around
the iron core, and Np is the number of times the primary coil is would around the
iron core. The purpose of the iron is to ensure that all of the magnetic field lines
passing through one coil also pass through the other coil. Vs > Vp is called “step up,”
and Vs < Vp is called a “step down” transformer. For an ideal transformer (most real
transformers nowadays are not far from ideal), 100% of the power supplied by the
primary circuit is delivered to the secondary circuit, i.e. VpIp = VsIs.

What I hope you remember about electricity and magnetism from this course is (a)
mainly how circuits work, and (b) this synopsis:

• Electric charge creates an electric field.

• Moving electric charge (i.e. electric current) creates a magnetic field.

• Force ~F = q ~E + q~v × ~B on charged particles.

– electromagnet, speaker, doorbell, mass spectrometer, electric motor

• Changing magnetic flux induces “emf” (voltage) E in loop

– electric generator, AC transformer

• Equivalently, changing magnetic field creates an electric field.

• Changing electric field creates a magnetic field.
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• Last two together allow EM waves to propagate

– wireless telegraph, radio, cell phone, and even light

Quantum mechanics / atoms

Light is emitted and absorbed in discrete “quanta” called photons. The energy Eγ of
a photon is given by

Eγ = hf =
hc

λ

where h = 6.626×10−34 J ·s is Planck’s constant, c = 2.9979×108 m/s is the speed
of light, f is frequency (in cycles/second, or Hz), and λ is wavelength (in meters).

The spectrum of thermal (black-body) radiation is very broad, but the peak (most
probable) wavelength is inversely proportional to temperature: hotter objects tend
to emit higher-energy (thus lower wavelength) photons:

λpeak =
2.90× 10−3 m ·K

T

with λpeak in meters and T in kelvins. See
http://en.wikipedia.org/wiki/Wien%27s displacement law . You can see quali-
tatively where this comes from by assuming that the photon energy corresponding to
λpeak is Eγ = αkBT , where kB is Boltzmann’s constant from thermal physics, and α
is some numerical constant. It turns out that α = 4.96 gives you the experimentally
correct result: λpeak = (hc)/(4.96kBT ).
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