
Physics 8 — Friday, October 4, 2019

I Turn in HW5. Next week I’ll hand out HW6, due two weeks
from today.

I For next week, you’ll read Ch11 (motion in a circle): read the
first half for Monday, and the second half for Wednesday.

I Ponder this with your neighbor while we get started:

A block initially at rest is allowed to slide down a frictionless ramp
and attains a speed v at the bottom. To achieve a speed 2v at the
bottom, how many times as high must a new ramp be?

(A) 1

(B) 1.414

(C) 2

(D) 3

(E) 4

(F) 5

(G) 6



At the bowling alley, the ball-feeder mechanism must exert a force
to push the bowling balls up a 1.0 m long ramp. The ramp leads
the balls to a chute 0.5 m above the base of the ramp. About how
much force must be exerted on a 5.0 kg bowling ball?

(A) 200 N

(B) 100 N

(C) 50 N

(D) 25 N

(E) 5.0 N

(F) impossible to determine.



Suppose you drop a 1 kg rock from a height of 5 m above the
ground. When it hits, how much force does the rock exert on the
ground? (Take g ≈ 10 m/s2.)

(A) 0.2 N

(B) 5 N

(C) 50 N

(D) 100 N

(E) impossible to determine without knowing over what distance
the rock slows when it impacts the ground.



Chapter 9 reading question

2. When you stand up from a seated position, you push down with
your legs. So then do you do negative work when you stand up?

“In this situation, we have 2 systems. Firstly, in the system of just
the person, the action of standing up will result in a loss of internal
or chemical energy, thereby resulting in a loss of system energy and
hence positive work (BY the system) [which implies negative work
done ON the system, by Earth’s gravitational force]. For the
system of the person and Earth, the action of standing up
increases the [system’s] potential energy at the expense of [the
person’s] internal [food] energy. In this situation, there is no
change in system energy and therefore no work is done.”



Reading question 2 had no really simple answer

When you stand up from a seated position, you push down with your

legs. Does this mean you do negative work when you stand up?

Suppose “system” = me + Earth + floor + chair

I ∆K = 0

I ∆U = mg (∆x)my c.o.m. > 0

I ∆Ethermal = 0 (debatable but irrelevant)

I ∆Esource = −mg (∆x)my c.o.m. < 0

I W = 0

There are no external forces. Everything of interest is inside the
system boundary.



Let’s try choosing a different “system.”
When you stand up from a seated position, you push down with your

legs. Does this mean you do negative work when you stand up?

Suppose “system” = me + floor + chair

I ∆K = 0

I ∆U = 0 (UG undefined if Earth not in system)

I ∆Ethermal = 0 (debatable but irrelevant)

I ∆Esource = −mg (∆x)my c.o.m. < 0

I W = −mg (∆x)my c.o.m. < 0

External gravitational force, exerted by Earth on me, does negative
work on me. Point of application of this external force is my
body’s center of mass. Force points downward, but displacement is
upward. W < 0. System’s total energy decreases.



Let’s try answering a slightly different question.

When a friend stands me up from a chair (e.g. my knees are weak

today), does my friend do positive or negative work?

Suppose “system” = me + Earth + floor + chair

I ∆K = 0

I ∆U = mg (∆x)my c.o.m. > 0

I ∆Ethermal = 0 (debatable but irrelevant)

I ∆Esource = 0

I W = mg (∆x)my c.o.m. > 0

My friend applies an upward force beneath my arms. The point of
application of force is displaced upward.



Let’s include my friend as part of “the system.”

When a friend stands me up from a chair (e.g. my knees are weak

today), does my friend do positive or negative work?

Suppose “system” = me + Earth + floor + chair + friend

I ∆K = 0

I ∆U = mg (∆x)my c.o.m. > 0

I ∆Ethermal = 0 (debatable but irrelevant)

I ∆Esource = −mg (∆x)my c.o.m. < 0

I W = 0

There is no external force. Everything is within the system.



Back to the original reading question
When you stand up from a seated position, you push down with your

legs. Does this mean you do negative work when you stand up?

I think the work done ON the system BY my legs is either
positive (if my legs are considered “external” to the
me+Earth+floor system and are supplying the energy to lift me) or
zero (if my legs are part of the system).

Remember the one way we got a negative answer: In the case in
which Earth was not part of the system, we found that the external
force of Earth’s gravity did negative work on me. But I was
pushing Earth downward, away from me. I lost energy. So even in
this case (where the work done on me was negative), the work
done by me was positive.

Key point: what you call “work” depends on how you define “the
system.”



A few key ideas from Chapters 8 (force) and 9 (work)
Impulse (i.e. momentum change) delivered by external force:

force =
d(momentum)

dt
⇔ ~J =

∫
~Fexternal dt

External force exerted ON system:

force =
d(work)

dx
⇔ W =

∫
Fx dx

Force exerted BY spring, gravity, etc.:

force = −d(potential energy)

dx

∆Esystem = flow of energy into system = work done ON system:

work = ∆(energy) = ∆K + ∆U + ∆Esource + ∆Ethermal

Notice that work : energy :: impulse : momentum



Some equation sheet entries for Chapters 8+9
http://positron.hep.upenn.edu/physics8/files/equations.pdf

Work (external, nondissipative, 1D):

W =

∫
Fx(x) dx

which for a constant force is

W = Fx ∆x

Power is rate of change of energy:

P =
dE

dt

Constant external force, 1D:

P = Fxvx

G.P.E. near earth’s surface:

Ugravity = mgh

Force of gravity near earth’s surface
(force is −dUgravity

dx ):

Fx = −mg

Potential energy of a spring:

Uspring =
1

2
k(x − x0)2

Hooke’s Law (force is −dUspring

dx ):

Fby spring ON load = −k(x − x0)

http://positron.hep.upenn.edu/physics8/files/equations.pdf


Things to understand before studying architectural structures:

I forces X (but we will continue to use, all term!)

I vectors — (now)

I torques — (chapter 12) — shortly after fall break



A Chapter 10 reading question:

Can an object be accelerated without changing its kinetic energy?

Answer: Yes. You can change an object’s direction without
changing its speed. So its velocity can change without changing its
kinetic energy.

Over a finite time interval, this is easy to arrange.

Over an infinitessimal time interval, if the acceleration vector is
perpendicular to the velocity vector, then direction changes, but
speed does not. This will be important in Chapter 11!
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Let’s quickly revisit free-body diagrams in 1D

You push on a crate, and it starts to move but you don’t. Draw a
free-body diagram for you and one for the crate. Then use the
diagrams and Newton’s third law of motion to explain why the
crate moves but you don’t.

(A) The force I exert on the crate is larger than the force the crate
exerts on me.

(B) The crate’s force on me is equal and opposite to my force on
the crate. The frictional force between my shoes and the floor
is equal in magnitude to the crate’s push on me, while the
frictional force between the crate and the floor is smaller than
my push on the crate.

(C) The crate and I exert equal and opposite forces on each other,
but I don’t move because I am much more massive than the
crate.



(free-body diagrams in one dimension)

If the crate and I were both standing on an ice rink, then it seems
clear that we would both start to move. If the crate and I were
both bolted to the floor, then it seems clear that neither one of us
would start to move. So the grip of the floor’s friction on my feet
must be greater in magnitude than the grip of the floor’s friction
on the crate.

Let’s say that I push to the right on the crate with a force
~Fme,crate, so the crate pushes to the left on me with a force
~Fcrate,me = −~Fme,crate. Meanwhile, the floor pushes to the right on

me with a force ~Ffloor,me, and the floor pushes (by a smaller

amount) to the left on the crate with a force ~Ffloor,crate.

It is reasonable that |~Ffloor,crate| < |~Ffloor,me|, because the bottom
of the crate is wood, while the soles of my shoes are rubber.



(free-body diagrams in one dimension)



Block sliding down inclined plane: try drawing free-body diagram.
Suppose some kinetic friction is present, but block still accelerates
downhill. Try drawing this with a neighbor, one step ahead of me.

First: let’s draw ~FG
E ,b for gravity.



Add gravity vector

Next decompose ~FG
E ,b into components ‖ and ⊥ to surface.



Decompose gravity vector: ‖ and ⊥ to surface

Next: add contact force “normal” (⊥) to surface.



Now add contact force “normal” (⊥) to surface

Next: add friction.



Now add friction (‖ to surface, opposing relative motion)



The block shown in this
free-body diagram is

(A) at rest.

(B) sliding downhill at
constant speed.

(C) sliding downhill and
speeding up.

(D) sliding downhill and
slowing down.

(E) sliding uphill and
speeding up.

(F) sliding uphill and
slowing down.



How would I change this free-body diagram . . .

if the block were at rest?



How would I change this free-body diagram . . .

if the block were sliding downhill at constant speed?



How would I change this free-body diagram . . .

if the block were sliding downhill and slowing down?



How would I change this free-body diagram . . .

if the block were sliding uphill and slowing down?



Another Chapter 10 reading question:

You’ve slammed on the brakes, and your car is skidding to a stop
on a steep and slippery winter road. Other things being equal, will
the car come to rest more quickly if it is traveling uphill or if it is
traveling downhill? Why? (Consider FBD for each case.)

(We stopped on this page. Let’s look again at FBDs then go on.)
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If I gently step on my car’s accelerator pedal, and the car starts to
move faster (without any screeching sounds), the frictional force
between the road and the rubber tire surface that causes my car to
accelerate is

(A) static friction.

(B) kinetic friction.

(C) normal force.

(D) gravitational force.

(E) there is no frictional force between road and tire.



If I slam down on my car’s accelerator pedal, and the car
screeches forward noisily like a drag-race car, the frictional force
between the road and the rubber tire surface that causes my car to
accelerate is

(A) static friction.

(B) kinetic friction.

(C) normal force.

(D) gravitational force.

(E) there is no frictional force between road and tire.



Why do modern cars have anti-lock brakes?

(A) because the pumping action of the anti-lock brake mechanism
keeps the brake pads from getting too hot.

(B) because pulsing the brakes on and off induces kinetic friction,
which is preferable to static friction.

(C) because the cofficient of static friction is larger than the
coefficient of kinetic friction, so you stop faster if your wheels
roll on the ground than you would if your wheels were
skidding on the ground.

(D) because the weird pulsating sensation you feel when the
anti-lock brakes engage is fun and surprising!



(from Bill Berner)



Static friction and kinetic (sometimes confusingly called “sliding”)
friction:

F Static ≤ µS FNormal

FKinetic = µK FNormal

“normal” & “tangential” components are ⊥ to and ‖ to surface

Static friction is an example of what physicists call a “force of
constraint” and engineers call a “reaction force.” In most cases,
you don’t know its magnitude until you solve for the other forces in
the problem and impose the condition that ~a = ~0. (An exception is
if we’re told that static friction “just barely holds on / just barely
lets go,” i.e. has its maximum possible value.)





I Steel on steel µK is about half that of rubber on concrete,
and much less than that of µS for rubber on concrete.

I So a train can take a while to skid to a stop!

I Even more so if the tracks are wet: µK ≈ 0.1

I At µ = 0.1 on level ground: 360 m to stop from 60 mph.

I At µ = 0.1 on 6◦ slope: not possible to stop.



A car of mass 1000 kg travels at constant speed 20 m/s on dry,
level pavement. The friction coeffs are µk = 0.8 and µs = 1.2.
What is the normal force exerted by the road on the car?

(A) 1000 N downward

(B) 1000 N upward

(C) 1000 N forward

(D) 1000 N backward

(E) 9800 N downward

(F) 9800 N upward

(G) 11800 N downward

(H) 11800 N upward



A car of mass 1000 kg is traveling (in a straight line) at a constant
speed of 20 m/s on dry, level pavement, with the cruise control
engaged to maintain this speed. The friction coefficients are
µk = 0.8 and µs = 1.2. The tires roll on the pavement without
slipping. What is the frictional force exerted by the road on the
car? (Let’s use g ≈ 10 m/s2 for simplicity here.)

(A) 8000 N backward

(B) 8000 N forward

(C) 8000 N upward

(D) 10000 N backward

(E) 10000 N forward

(F) 12000 N backward

(G) 12000 N forward

(H) It points forward, must have magnitude ≤ 12000 N, and has
whatever value is needed to counteract air resistance.



A car of mass 1000 kg is initially traveling (in a straight line) at
20 m/s on dry, level pavement, when suddenly the driver jams on
the (non-anti-lock) brakes, and the car skids to a stop with its
wheels locked. The friction coefficients are µk = 0.8 and µs = 1.2.
What is the frictional force exerted by the road on the car? (Let’s
use g ≈ 10 m/s2 for simplicity here.)

(A) 8000 N backward

(B) 8000 N forward

(C) 8000 N upward

(D) 10000 N backward

(E) 10000 N forward

(F) 12000 N backward

(G) 12000 N forward

(H) It points forward, must have magnitude ≤ 12000 N, and has
whatever value is needed to counteract air resistance.



Suppose that for rubber on dry concrete, µk = 0.8 and µs = 1.2.
If a car of mass m traveling at initial speed vi on a level road jams
on its brakes and skids to a stop with its wheels locked, how do I
solve for the length L of the skid marks? (Let’s use g ≈ 10 m/s2

for simplicity here.)

(A) use v2f = v2i + 2aL with vf = 0 and a = −2.0 m/s2

(B) use v2f = v2i + 2aL with vf = 0 and a = −4.0 m/s2

(C) use v2f = v2i + 2aL with vf = 0 and a = −6.0 m/s2

(D) use v2f = v2i + 2aL with vf = 0 and a = −8.0 m/s2

(E) use v2f = v2i + 2aL with vf = 0 and a = −10.0 m/s2

(F) use v2f = v2i + 2aL with vf = 0 and a = −12.0 m/s2

(G) use v2f = v2i + 2aL with vf = 0 and a = −14.0 m/s2



Suppose that for rubber tires on dry, level pavement, the friction
coefficients are µk = 0.8 and µs = 1.2. If you assume that the
forces between the ground and the tires are the same for all four
tires (4-wheel drive, etc.), what is a car’s maximum possible
acceleration for this combination of tires and pavement? (Let’s use
g ≈ 10 m/s2 for simplicity here.)

(A) 1.0 m/s2

(B) 5.0 m/s2

(C) 8.0 m/s2

(D) 10.0 m/s2

(E) 12.0 m/s2



An object “O” of mass m slides down an inclined surface “S” at
constant velocity. What is the magnitude of the normal force F n

so

exerted by the surface on the object?

(A) F n
so = mg

(B) F n
so = mg sin θ

(C) F n
so = mg cos θ

(D) F n
so = mg tan θ

(E) F n
so = µkmg

(F) F n
so = µkmg sin θ

(G) F n
so = µkmg cos θ

(H) F n
so = µkmg tan θ



An object “O” of mass m slides down an inclined surface “S” at
constant velocity. What is the magnitude of the (kinetic)
frictional force F k

so exerted by the surface on the object?

(A) F k
so = mg

(B) F k
so = mg sin θ

(C) F k
so = mg cos θ

(D) F k
so = mg tan θ

(E) F k
so = µkmg

(F) F k
so = µkmg sin θ

(G) F k
so = µkmg cos θ

(H) F k
so = µkmg tan θ



An object “O” of mass m slides down an inclined surface “S” at
constant velocity. What is the magnitude of the gravitational
force F g

eo exerted by Earth on the object?

(A) F g
eo = mg

(B) F g
eo = mg sin θ

(C) F g
eo = mg cos θ

(D) F g
eo = mg tan θ

(E) F g
eo = µkmg

(F) F g
eo = µkmg sin θ

(G) F g
eo = µkmg cos θ

(H) F g
eo = µkmg tan θ



An object “O” of mass m slides down an inclined surface “S” at
constant velocity. Let the x-axis point downhill. What is the
magnitude of the downhill (tangential) component F g

eo,x of the
gravitational force exerted by Earth on the object?

(A) F g
eo,x = mg

(B) F g
eo,x = mg sin θ

(C) F g
eo,x = mg cos θ

(D) F g
eo,x = mg tan θ

(E) F g
eo,x = µkmg

(F) F g
eo,x = µkmg sin θ

(G) F g
eo,x = µkmg cos θ

(H) F g
eo,x = µkmg tan θ



Since object “O” slides down surface “S” at constant velocity, the
forces on O must sum vectorially to zero. How do I express this
fact for the forces acting along the downhill (tangential) axis?

(A) µkmg = mg cos θ

(B) µkmg = mg sin θ

(C) µkmg cos θ = mg sin θ

(D) µkmg sin θ = mg cos θ

(E) µkmg cos θ = mg

(F) µkmg sin θ = mg

(G) mg sin θ = mg cos θ



Suppose friction holds object “O” at rest on surface “S.” Which
statement is true?

(A) mg sin θ = F s
so = µkmg cos θ

(B) mg sin θ = F s
so = µsmg cos θ

(C) mg sin θ = F s
so ≤ µkmg cos θ

(D) mg sin θ = F s
so ≤ µsmg cos θ

(E) mg cos θ = F s
so = µkmg sin θ

(F) mg cos θ = F s
so = µsmg sin θ

(G) mg cos θ = F s
so ≤ µkmg sin θ

(H) mg cos θ = F s
so ≤ µsmg sin θ



Suppose friction holds object “O” at rest on surface “S.” Then I
gradually increase θ until the block just begins to slip. Which
statement is true at the instant when the block starts slipping?

(A) mg sin θ = F s
so = µkmg cos θ

(B) mg sin θ = F s
so = µsmg cos θ

(C) mg sin θ = F s
so ≤ µkmg cos θ

(D) mg sin θ = F s
so ≤ µsmg cos θ

(E) mg cos θ = F s
so = µkmg sin θ

(F) mg cos θ = F s
so = µsmg sin θ

(G) mg cos θ = F s
so ≤ µkmg sin θ

(H) mg cos θ = F s
so ≤ µsmg sin θ



Friction on inclined plane

Why do I “cross off” the downward gravity arrow?



Take x-axis to be downhill, y -axis to be upward ⊥ from surface.

~FG
⊥ = −mg cos θ ĵ , ~FN = +mg cos θ ĵ

~FG
‖ = +mg sin θ î

If block is not sliding then friction balances downhill gravity:

~F S = −mg sin θ î

(I’ll skip this slide, but it’s here for reference.)



Magnitude of “normal” force (“normal” is a synonym for
“perpendicular”) between surfaces is

FN = mg cos θ

Magnitude of static friction must be less than maximum:

F S ≤ µSF
N = µS mg cos θ

Block begins sliding when downhill component of gravity equals
maximum magnitude of static friction . . .



Block begins sliding when downhill component of gravity equals
maximum magnitude of static friction:

µS mg cos θ = mg sin θ

µS =
mg sin θ

mg cos θ

µS = tan θ



A Ch10 problem that may not fit into HW6

The coefficient of static friction of tires on ice is about 0.10.
(a) What is the steepest driveway on which you could park under
those circumstances? (b) Draw a free-body diagram for the car
when it is parked (successfully) on an icy driveway that is just a
tiny bit less steep than this maximum steepness. [We might want
to do (b) before we do (a).]



A Ch10 problem that may not fit into HW6

A fried egg of inertia m slides (at constant speed) down a Teflon
frying pan tipped at an angle θ above the horizontal. (a) Draw the
free-body diagram for the egg. Be sure to include friction.
(b) What is the “net force” (i.e. the vector sum of forces) acting
on the egg? (c) How do these answers change if the egg is instead
speeding up as it slides?



A heavy crate has plastic skid
plates beneath it and a tilted
handle attached to one side.
Which requires a smaller force
(directed along the diagonal
rod of the handle) to move the
box? Why?

(A) Pushing the crate is easier
than pulling.

(B) Pulling the crate is easier
than pushing.

(C) There is no difference.



Example (tricky!) problem

A woman applies a constant force to pull a 50 kg box across a
floor at constant speed. She applies this force by pulling on a
rope that makes an angle of 37◦ above the horizontal. The friction
coefficient between the box and the floor is µk = 0.10.

(a) Find the tension in the rope.

(b) How much work does the woman do in moving the box 10 m?



free-body diagram for box

What are all of the forces acting on the box? Try drawing your
own FBD for the box. It’s tricky!

(I should redraw the RHS of this diagram on the board.)



free-body diagram for box

What are all of the forces acting on the box? Try drawing your
own FBD for the box. It’s tricky!

(I should redraw the RHS of this diagram on the board.)



find tension in rope

Step one: If T is the tension in the rope, then what is the normal
force (by floor on box)?

(A) FN = mg

(B) FN = mg + T cos θ

(C) FN = mg + T sin θ

(D) FN = mg − T cos θ

(E) FN = mg − T sin θ



find tension in rope

Step two: what is the frictional force exerted by the floor on the
box (which is sliding across the floor at constant speed)?

(A) FK = µK (mg − T sin θ)

(B) FK = µK (mg − T cos θ)

(C) FK = µS(mg − T sin θ)

(D) FK = µS(mg − T cos θ)

(E) FK = (mg − T sin θ)

(F) FK = (mg − T cos θ)



find tension in rope

Step three: how do I use the fact that the box is moving at
constant velocity (and hence is not accelerating)?

(A) T = FK = µK (mg − T sin θ)

(B) T cos θ = FK = µK (mg − T sin θ)

(C) T sin θ = FK = µK (mg − T sin θ)



solution (part a): find tension in rope

Force by rope on box has upward vertical component T sin θ. So the

normal force (by floor on box) is FN = mg − T sin θ .

Force of friction is FK = µK (mg − T sin θ) . To keep box sliding at

constant velocity, horizontal force by rope on box must balance FK .

T cos θ = FK = µK (mg − T sin θ) ⇒ T =
µKmg

cos θ + µK sin θ

This reduces to familiar T = µKmg if θ = 0◦ (pulling horizontally) and
even reduces to a sensible T = mg if θ = 90◦ (pulling vertically).

Plugging in θ = 37◦, so cos θ = 4/5 = 0.80, sin θ = 3/5 = 0.60,

T =
(0.10)(50 kg)(9.8 m/s2)

(0.80) + (0.10)(0.60)
= 57 N



solution (part b): work done by pulling for 10 meters

In part (a) we found tension in rope is T = 57 N and is oriented
at an angle θ = 36.9◦ above the horizontal.

In 2D, work is displacement times component of force along
direction of displacement (which is horizontal in this case). So
the work done by the rope on the box is

W = ~Frb ·∆~rb
This is the dot product (or “scalar product”) of the force ~Frb (by
rope on box) with the displacement ∆~rb of the point of application
of the force.



In part (a) we found tension in rope is T = 57 N and is oriented
at an angle θ = 36.9◦ above the horizontal.

What is the work done by the rope on the box by pulling the box
across the floor for 10 meters? (Assume my arithmetic is correct.)

(In two dimensions, work is the dot product of the force ~Frb with
the displacement ∆~rb of the point of application of the force.)

(A) W = (10 m)(T ) = (10 m)(57 N) = 570 J

(B) W = (10 m)(T cos θ) = (10 m)(57 N)(0.80) = 456 J

(C) W = (10 m)(T sin θ) = (10 m)(57 N)(0.60) = 342 J

(D) W = (8.0 m)(T cos θ) = (8.0 m)(57 N)(0.80) = 365 J

(E) W = (8.0 m)(T sin θ) = (8.0 m)(57 N)(0.60) = 274 J



Easier example

How hard do you have to push a 1000 kg car (with brakes on, all
wheels, on level ground) to get it to start to slide? Let’s take
µS ≈ 1.2 for rubber on dry pavement.

FNormal = mg = 9800 N

F Static ≤ µSFN = (1.2)(9800 N) ≈ 12000 N

So the static friction gives out (hence car starts to slide) when
your push exceeds 12000 N.

How hard do you then have to push to keep the car sliding at
constant speed? Let’s take µK ≈ 0.8 for rubber on dry pavement.

FKinetic = µKF
N = (0.8)(9800 N) ≈ 8000 N
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wheels, on level ground) to get it to start to slide? Let’s take
µS ≈ 1.2 for rubber on dry pavement.

FNormal = mg = 9800 N

F Static ≤ µSFN = (1.2)(9800 N) ≈ 12000 N

So the static friction gives out (hence car starts to slide) when
your push exceeds 12000 N.

How hard do you then have to push to keep the car sliding at
constant speed? Let’s take µK ≈ 0.8 for rubber on dry pavement.

FKinetic = µKF
N = (0.8)(9800 N) ≈ 8000 N



How far does your car slide on dry, level pavement if you jam on
the brakes, from 60 mph (27 m/s)?

FN = mg , FK = µKmg

a =? ∆x =?

(The math is worked out on the next slides, but we won’t go
through them in detail. It’s there for you to look at later.)



How far does your car slide on dry, level pavement if you jam on
the brakes, from 60 mph (27 m/s)?

FN = mg , FK = µKmg

a = −FK/m = −µKg = −(0.8)(9.8 m/s2) ≈ −8 m/s2

Constant force → constant acceleration from 27 m/s down to zero:

v2f = v2i + 2ax

x =
v2i
−2a

=
(27 m/s)2

2× (8 m/s2)
≈ 45 m

How much time elapses before you stop?

vf = vi + at ⇒ t =
27 m/s

8 m/s2
= 3.4 s



How does this change if you have anti-lock brakes (or good
reflexes) so that the tires never skid?

Remember µS > µK . For
rubber on dry pavement, µS ≈ 1.2 (though there’s a wide range)
and µK ≈ 0.8. The best you can do is maximum static friction:

F S ≤ µSmg

a = −F S/m = −µSg = −(1.2)(9.8 m/s2) ≈ −12 m/s2

Constant force → constant acceleration from 27 m/s down to zero:

v2f = v2i + 2ax

x =
v2i
−2a

=
(27 m/s)2

2× (12 m/s2)
≈ 30 m

How much time elapses before you stop?

vf = vi + at ⇒ t =
27 m/s

15 m/s2
= 2.2 s

So you can stop in about 2/3 the time (and 2/3 the distance) if
you don’t let your tires skid. Or whatever µK/µS ratio is.



How does this change if you have anti-lock brakes (or good
reflexes) so that the tires never skid? Remember µS > µK . For
rubber on dry pavement, µS ≈ 1.2 (though there’s a wide range)
and µK ≈ 0.8. The best you can do is maximum static friction:

F S ≤ µSmg

a = −F S/m = −µSg = −(1.2)(9.8 m/s2) ≈ −12 m/s2

Constant force → constant acceleration from 27 m/s down to zero:

v2f = v2i + 2ax

x =
v2i
−2a

=
(27 m/s)2

2× (12 m/s2)
≈ 30 m

How much time elapses before you stop?

vf = vi + at ⇒ t =
27 m/s

15 m/s2
= 2.2 s

So you can stop in about 2/3 the time (and 2/3 the distance) if
you don’t let your tires skid. Or whatever µK/µS ratio is.



A Ch10 problem that may not fit into HW6

Calculate ~C · (~B − ~A) if ~A = 3.0î + 2.0ĵ , ~B = 1.0î − 1.0ĵ , and
~C = 2.0î + 2.0ĵ . Remember that there are two ways to compute a
dot product—choose the easier method in a given situation: one
way is ~P · ~Q = |~P|| ~Q| cosϕ, where ϕ is the angle between vectors
~P and ~Q, and the other way is ~P · ~Q = PxQx + PyQy .



A Ch10 problem that may not fit into HW6

A child rides her bike 1.0 block east and then
√

3 ≈ 1.73 blocks
north to visit a friend. It takes her 10 minutes, and each block is
60 m long. What are (a) the magnitude of her displacement,
(b) her average velocity (magnitude and direction), and (c) her
average speed?



Physics 8 — Friday, October 4, 2019

I Turn in HW5. Next week I’ll hand out HW6, due two weeks
from today.

I For next week, you’ll read Chapter 11 (motion in a circle):
read the first half for Monday, and the second half for
Wednesday.


