
Physics 8 — Monday, October 21, 2019

I This week you’re reading Giancoli Ch9 (static equilibrium,
etc.), and O/K Ch1. In class, we’re still finishing up Mazur
Ch11 (motion in a circle). You may want to buy one of my
$10 used copies of Onouye/Kane, which you can either keep
or sell back to me for $10 in December.

Let R be the radius of the
circle in this loop-the-loop
demo. I want the ball to make
it all the way around the loop
without falling off. What is the
lowest height h at which I can
start the ball (from rest)?

(Think now — we’ll do multiple-choice on the next page.)



Let R be the radius of the
circle in this loop-the-loop
demo. I want the ball to make
it all the way around the loop
without falling off. What is the
lowest height h at which I can
start the ball (from rest)?

(A) The ball will make it all the way around if h ≥ R.

(B) The ball will make it all the way around if h ≥ 2R.

(C) If h = 2R, the ball will just make it to the top and will then
fall down (assuming, for the moment, that it slides
frictionlessly along the track). When the ball is at the top of
the circle, its velocity must still be large enough to require a
downward normal force exerted by the track on the ball. So
the minimum h is even larger than 2R. My neighbor and I are
discussing now just how much higher that should be.



The ball clearly slows down as it makes its way up from the
bottom toward the top of the circle. At the instant when the ball
is at the position shown (i.e. it is at the same level as the center of
the circle), in what direction does its velocity vector point?



The ball clearly slows down as it makes its way up from the
bottom toward the top of the circle. At the instant when the ball
is at the position shown (i.e. it is at the same level as the center of
the circle), what do we know about the vertical (y axis points up)
component, ay , of the ball’s acceleration vector?

If ay 6= 0, what vertical force(s) Fy is/are responsible?



The ball clearly slows down as it makes its way up from the
bottom toward the top of the circle. At the instant when the ball
is at the position shown (i.e. it is at the same level as the center of
the circle), what do we know about the horizontal (x axis points
right) component, ax , of the ball’s acceleration vector?

If ax 6= 0, what horizontal force(s) Fx is/are responsible?



Suppose the ball makes it all the way around the circle without
falling off. At the instant when the ball is at the position shown
(at top of circle), what do we know about the vertical component,
ay , of the ball’s acceleration vector?

If ay 6= 0, what vertical force(s) Fy is/are responsible?



Suppose the ball makes it all the way around the loop-the-loop
with much more than sufficient speed to stay on the circular track.
Let the y -axis point upward, and let vtop be the ball’s speed when
it reaches the top of the loop. What is the y component, ay , of
the ball’s acceleration when it is at the very top of the loop?

(A) ay = −g
(B) ay = +g

(C) ay = +v2top/R

(D) ay = −v2top/R
(E) ay = +g + v2top/R

(F) ay = −g − v2top/R

(G) ay = +g + vtop/R
2

(H) ay = −g − vtop/R
2



The track can push on the ball, but it can’t pull on the ball! How
do I express the fact that the track is still pushing on the ball even
at the very top of the loop?

(A) Write the equation of motion for the ball: m~a =
∑ ~Fon ball,

and require the normal force exerted by the track on the ball
to point inward, even at the very top. (At the very top,
“inward” is “downward.”) If the equation m~a =

∑ ~Fon ball

gave us an outward-pointing normal force (exerted by track on
ball), that would be inconsistent with the ball’s staying in
contact with the track.

(B) Use conservation of angular momentum.

(C) Draw a free-body diagram for the ball, and require that
gravity and the normal force point in opposite directions.

(D) Draw a free-body diagram for the ball, and require that the
magnitude of the normal force be at least as large as the force
of Earth’s gravity on the ball.



For the ball to stay in contact with the track when it is at the top
of the loop, there must still be an inward-pointing normal force
exerted by the track on the ball, even at the very top. How can I

express this fact using may =
∑

Fy ? Let vtop be the ball’s

speed at the top of the loop.

(A) +mv2top/R = +mg + FN
tb with FN

tb > 0

(B) +mv2top/R = +mg − FN
tb with FN

tb > 0

(C) +mv2top/R = −mg + FN
tb with FN

tb > 0

(D) +mv2top/R = −mg − FN
tb with FN

tb > 0

(E) −mv2top/R = +mg + FN
tb with FN

tb > 0

(F) −mv2top/R = +mg − FN
tb with FN

tb > 0

(G) −mv2top/R = −mg + FN
tb with FN

tb > 0

(H) −mv2top/R = −mg − FN
tb with FN

tb > 0



How do I decide the minimum height h from which the ball will
make it all the way around the loop without losing contact with
the track? For simplicity, assume that the track is very slippery, so
that you can neglect the ball’s rotational kinetic energy.

(A) 2mgR = 1
2mv2top + mgh with vtop =

√
gR

(B) mgR = 1
2mv2top + mgh with vtop =

√
gR

(C) mgh = 1
2mv2top + 2mgR with vtop =

√
gR

(D) mgh = 1
2mv2top + mgR with vtop =

√
gR

(By the way, how would the answer change if I said instead that
the (solid) ball rolls without slipping on the track?)



How do I decide the minimum height h from which the ball will
make it all the way around the loop without losing contact with
the track? Let’s now be realistic: the ball is a solid sphere that
rolls without slipping on the track.

(A) mgh = 1
2mv2top + 2mgR

(B) mgh = 1
2mv2top + 1

2 Iω
2
top + 2mgR

with vtop =
√
gR and ωtop = vtop/rball

(Little “rball” is the radius of the ball. Big “R” is the radius of the
loop-the-loop.)



mgh =
1

2
mv2top +

1

2
Iω2

top + 2mgR

with vtop =
√
gR and ωtop = vtop/rball and I = 2

5mr2ball.

mgh =
1

2
m(gR) +

2
5mr2ball
2r2ball

(gR) + 2mgR = 2.7mgR

We stopped after this.



How would you approach this problem? Discuss with your neighbor
while I set up a demonstration along the same lines . . .

(A) initial angular momentum of bucket equals final angular
momentum of cylinder + bucket

(B) initial G.P.E. equals final K.E. (translational for bucket +
rotational for cylinder)

(C) initial G.P.E. equals final K.E. of bucket

(D) initial G.P.E. equals final K.E. of cylinder

(E) initial K.E. of bucket equals final G.P.E.

(F) use torque = mgR to find constant angular acceleration



I What is the rotational inertia for a solid cylinder?

I How do you relate v of the bucket with ω of the cylinder?
Why is this true?

I What is the expression for the total kinetic energy?

I Why is angular momentum not the same for the initial and
final states?

I What are the two expressions for angular momentum used in
Chapter 11?

I Does anyone know (though this is in Chapter 12 and is tricky)
why using τ = mgR would not give the correct angular
acceleration? What if you used τ = TR, where T is the
tension in the rope?



Table 11.3. Also in “equation sheet”
http://positron.hep.upenn.edu/p8/files/equations.pdf

http://positron.hep.upenn.edu/p8/files/equations.pdf




How would you approach this problem? Discuss with neighbors!
Which (if any) of these statements is false ?

(A) I know the change in G.P.E from the initial to the desired final
states. So the initial K.E. (which is rotational) of the rod
needs to be at least this large.

(B) The book (or equation sheet) gives rotational inertia I for a
long, thin rod about its center. So I can use the parallel-axis
theorem to get I for the rod about one end.

(C) The angular momentum, L = Iω, is the same for the initial
and final states.

(D) Because the rod pivots about one end, the speed of the other
end is v = ω` (where ` is length of rod)

(E) None. (All of the above statements are true.)



The rotational inertia for a long, thin rod of length ` about a
perpendicular axis through its center is

I =
1

12
m`2

What is its rotational inertia about one end?

(A) 1
12m`

2

(B) 1
24m`

2

(C) 1
2m`

2

(D) 1
3m`

2

(E) 1
4m`

2

(F) 1
6m`

2



If an object revolves about an axis that does not pass through the
object’s center of mass (suppose axis has ⊥ distance d⊥ from
CoM), the rotational inertia is larger, because the object’s CoM
revolves around a circle of radius d⊥ and in addition the object
rotates about its own CoM.

This larger rotational inertia is given by the parallel axis theorem:

I = Icm + Md2
⊥

where Icm is the object’s rotational inertia about an axis (which
must be parallel to the new axis of rotation) that passes through
the object’s CoM.

(We’ll go over the parallel-axis theorem again next time. First I
want to make sure you know what you need for this week’s HW.)



The rotational inertia of a long, thin rod (whose thickness is
negligible compared with its length) of mass M and length L, for
rotation about its CoM, is

I =
1

12
ML2

Using the parallel axis theorem, what is the rod’s rotational inertia
for rotation about one end?



Table 11.3. Also in “equation sheet”
http://positron.hep.upenn.edu/p8/files/equations.pdf

http://positron.hep.upenn.edu/p8/files/equations.pdf




(In case you’re curious where that I = ML2/12 comes from.)
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