
(begin video covering Mazur ch10)

Things to understand before studying architectural structures:

I forces X (but we will continue to use, all term!)

I vectors — (now)

I torques — (chapter 12)

I The next few chapters (10,11,12) are the most difficult
material in the course. We will slow down for them. After
that, the fun begins: we can apply our knowledge of forces
(ch8), vectors (ch10), and torque (ch12) to structures.

I have an astonishing 86 slides of material for ch10, so I expect
we’ll split ch10 into two parts.



A Chapter 10 reading question:

Can an object be accelerated without changing its kinetic energy?

Answer: Yes. You can change an object’s direction without
changing its speed. So its velocity can change without changing its
kinetic energy.

Over a finite time interval, this is easy to arrange.

Over an infinitessimal time interval, if the acceleration vector is
perpendicular to the velocity vector, then direction changes, but
speed does not. This will be important in Chapter 11!



Let’s start with the familiar “ball-popper” cart

New (ch10): use two coordinate axes. In most cases, make y -axis
point upward (vertical), and x-axis point to the right (horizontal).

Vertical equation of motion (ay = −g is constant):

y = yi + vi ,y t −
1

2
gt2

vy = vi ,y − gt

Horizontal equation of motion (vx = vi ,x is constant):

x = xi + vi ,x t

If you let xi = 0 (simpler) and solve horizontal eqn. for t, you get

t =
x

vi ,x

Now plug this into the equation for y . . .



y = yi + vi ,y t −
1

2
gt2

Now plug t = x
vi,x

into the equation for y :

y = yi + vi ,y

(
x

vi ,x

)
− 1

2
g

(
x

vi ,x

)2

Separate out the constants to see that y(x) is a parabola:

y = yi +

(
vi ,y
vi ,x

)
x −

(
g

2v2i ,x

)
x2

(You can “see” this either by drawing a graph or by happening to
remember from math that y = Ax2 + Bx + C is a parabola.)

Let’s draw and “decompose” the velocity vector at the moment
the ball is launched from the cart.



Now decompose into x and y components . . .



Notice (blackboard) that adding the two components together
gives back the original vector.



Which graph best represents the acceleration vector ~a and velocity
vector ~v the instant after the ball is launched from the cart?



Which graph best represents the acceleration vector ~a and velocity
vector ~v at the top of the ball’s trajectory?



Which graph best represents the acceleration vector ~a and velocity
vector ~v the instant before the ball lands in the cart?



Which path best represents the trajectory of a cantaloupe thrown
horizontally off a bridge? (What’s wrong with the other two?)
(Next slide zooms in on corner.)



zoom in on top-left corner (launch position)

Which path best represents the trajectory of a cantaloupe thrown
horizontally off a bridge? (What’s wrong with the other two?)



Two steel balls are released simultaneously from the same height
above the ground.

One ball is simply dropped (zero initial velocity).

The other ball is thrown horizontally (initial velocity is nonzero,
but is purely horizontal).

Which ball will hit the ground first?

(A) The ball thrown horizontally will hit the ground first.

(B) The ball released from rest will hit the ground first.

(C) Both balls will hit the ground at the same time.

(I should draw a picture of both trajectories on the board.)



A story . . .

Once upon a time, a monkey — who happened to be easily
frightened by loud noises — was minding his own business, clinging
to a tree branch with one hand, and with the other hand enjoying
the bananas he’d stored away after solving XC physics problems.



Look out . . .



Now let’s move on to two questions of much more
practical significance:

1. Should the “ecologist” shoot the “tranquilizer
dart” at Nim Chimpsky, or at Mr. Bill? (She needs
to collect a harmless DNA sample from one of these
two characters for the Primate Genome Project.)

(A) Tranquilize Nim Chimpsky! (His DNA sample
may explain why he was smart enough to learn
all those words of American Sign Language.)

(B) Tranquilize Mr. Bill! (If you manage to find any
real DNA in his sample, the result will definitely
be a publishable paper, if not a Nobel Prize.)



(A) study Nim Chimpsky.
(B) study Mr. Bill.



Now let’s move on to two questions of much more
practical significance:

1. Should the “ecologist” shoot the “tranquilizer
pellet” at Nim Chimpsky, or at Mr. Bill?

2. It takes the pellet some time to travel across the
width of the room.

I In that time interval, gravity will cause
Nim/Bill to fall.

I So where should I aim the pea-shooter so
that the pellet hits Nim/Bill as he drops?

Before you answer, let’s explain in detail how this
game works, why Nim/Bill lets go of the tree, what
each trajectory will look like, etc.





What shall I aim for?

(A) Aim high, because the steel pellet is so much heavier than
Mr. Bill, and will be pulled down more by gravity.

(B) Aim low, because Mr. Bill will be falling while the pellet
travels.

(C) Aim directly for Mr. Bill. This is clearly what you would do if
gravity were absent. The presence of gravity will affect
Mr. Bill and the pellet in the same way (they experience the
same downward gravitational acceleration), so aiming directly
for Mr. Bill will result in a direct hit.

(D) How much below Mr. Bill you need to aim depends on the
speed with which you fire the pellet, because the time that it
takes the pellet to reach Mr. Bill will depend on how fast the
pellet is shot.

(I’m not going to give away my own answer yet!)





Try writing equations for xBill(t), yBill(t), xpellet(t), ypellet(t) , in

terms of xi , yi , θ (shown on diagram) and initial pellet speed vi .





Anybody want to change your vote?

(A) Aim high, because the steel pellet is so much heavier than
Mr. Bill, and will be pulled down more by gravity.

(B) Aim low, because Mr. Bill will be falling while the pellet
travels.

(C) Aim directly for Mr. Bill. This is clearly what you would do
if gravity were absent. The presence of gravity will affect
Mr. Bill and the pellet in the same way, so aiming directly for
Mr. Bill will result in a direct hit.

(D) How much below Mr. Bill you need to aim depends on the
speed with which you fire the pellet, because the time that it
takes the pellet to reach Mr. Bill will depend on how fast the
pellet is shot.



Mr. Bill starts from rest at (xi , yi ). Pellet starts at (0, 0) with
initial velocity (vi cos θ, vi sin θ). Equations of motion:

xbill = xi

ybill = yi −
1

2
gt2

xpellet = vi cos θ t

ypellet = vi sin θ t − 1

2
gt2

When does pellet cross Mr. Bill’s downward path?

xpellet = xbill ⇒ vi cos θ t = xi

t =
xi

vi cos θ



Plugging in t =
(

xi
vi cos θ

)
:

xbill = xi

xpellet = vi cos θ

(
xi

vi cos θ

)
= xi

ybill = yi −
1

2
g

(
xi

vi cos θ

)
2

ypellet = vi sin θ

(
xi

vi cos θ

)
− 1

2
g

(
xi

vi cos θ

)
2

What is vertical separation between Mr. Bill and the pellet at the
instant when xpellet = xbill = xi ?

ybill − ypellet = yi − vi sin θ

(
xi

vi cos θ

)
ybill − ypellet = yi − xi tan θ = yi − yi = 0



Anybody want to change your vote?

(A) Aim high, because the steel pellet is so much heavier than
Mr. Bill, and will be pulled down more by gravity.

(B) Aim low, because Mr. Bill will be falling while the pellet
travels.

(C) Aim directly for Mr. Bill. This is clearly what you would do
if gravity were absent. The presence of gravity will affect
Mr. Bill and the pellet in the same way, so aiming directly for
Mr. Bill will result in a direct hit.

(D) How much below Mr. Bill you need to aim depends on the
speed with which you fire the pellet, because the time that it
takes the pellet to reach Mr. Bill will depend on how fast the
pellet is shot.



Oh noooo . . .

https://en.wikipedia.org/wiki/Mr._Bill

https://en.wikipedia.org/wiki/Mr._Bill


From a height h above the ground, I throw a ball with an initial
velocity that is nonzero only in the horizontal direction: vxi > 0,
vyi = 0. How do I determine how long it takes to reach the
ground?

(A) h + vxi t = 0

(B) h + vxi t − 1
2gt

2 = 0

(C) h + vyi t = 0

(D) h − 1
2gt

2 = 0



From a height h above the ground, I throw a ball with an initial
velocity that is nonzero only in the horizontal direction: vxi > 0,
vyi = 0. If the ball’s initial x coordinate is xi = 0, how do I
determine the x coordinate where the ball hits the ground?

(A) xf = h + vxi t − 1
2gt

2, with t given on the previous page

(B) xf = h + vxi t − 1
2gt

2, with t = 0

(C) xf = xi + vxi t, with t given on the previous page

(D) xf = xi + vxi t, with t = 0

(E) yf = yi + vxi t, with t given on the previous page

(F) yf = yi + vxi t, with t = 0



From a height h above the ground, I throw a ball with an initial
velocity that is nonzero only in the horizontal direction: vxi > 0,
vyi = 0. How do I determine the x and y components of the ball’s
velocity, vx and vy , at the instant before the ball hits the ground?





Let’s quickly revisit free-body diagrams in 1D

You push on a crate, and it starts to move but you don’t. Draw a
free-body diagram for you and one for the crate. Then use the
diagrams and Newton’s third law of motion to explain why the
crate moves but you don’t.

(A) The force I exert on the crate is larger than the force the crate
exerts on me.

(B) The crate’s force on me is equal and opposite to my force on
the crate. The frictional force between my shoes and the floor
is equal in magnitude to the crate’s push on me, while the
frictional force between the crate and the floor is smaller than
my push on the crate.

(C) The crate and I exert equal and opposite forces on each other,
but I don’t move because I am much more massive than the
crate.



(free-body diagrams in one dimension)

If the crate and I were both standing on an ice rink, then it seems
clear that we would both start to move. If the crate and I were
both bolted to the floor, then it seems clear that neither one of us
would start to move. So the grip of the floor’s friction on my feet
must be greater in magnitude than the grip of the floor’s friction
on the crate.

Let’s say that I push to the right on the crate with a force
~Fme,crate, so the crate pushes to the left on me with a force
~Fcrate,me = −~Fme,crate. Meanwhile, the floor pushes to the right on

me with a force ~Ffloor,me, and the floor pushes (by a smaller

amount) to the left on the crate with a force ~Ffloor,crate.

It is reasonable that |~Ffloor,crate| < |~Ffloor,me|, because the bottom
of the crate is wood, while the soles of my shoes are rubber.



(free-body diagrams in one dimension)



If I gently step on my car’s accelerator pedal, and the car starts to
move faster (without any screeching sounds), the frictional force
between the road and the rubber tire surface that causes my car to
accelerate is

(A) static friction.

(B) kinetic friction.

(C) normal force.

(D) gravitational force.

(E) there is no frictional force between road and tire.



If I slam down on my car’s accelerator pedal, and the car
screeches forward noisily like a drag-race car, the frictional force
between the road and the rubber tire surface that causes my car to
accelerate is

(A) static friction.

(B) kinetic friction.

(C) normal force.

(D) gravitational force.

(E) there is no frictional force between road and tire.



Why do modern cars have anti-lock brakes?

(A) because the pumping action of the anti-lock brake mechanism
keeps the brake pads from getting too hot.

(B) because pulsing the brakes on and off induces kinetic friction,
which is preferable to static friction.

(C) because the cofficient of static friction is larger than the
coefficient of kinetic friction, so you stop faster if your wheels
roll on the ground than you would if your wheels were
skidding on the ground.

(D) because the weird pulsating sensation you feel when the
anti-lock brakes engage is fun and surprising!



(photo credit: Bill Berner)



Static friction and kinetic (sometimes confusingly called “sliding”)
friction:

F Static ≤ µS FNormal

FKinetic = µK FNormal

“normal” & “tangential” components are ⊥ to and ‖ to surface

Static friction is an example of what physicists call a “force of
constraint” and engineers call a “reaction force.” In most cases,
you don’t know its magnitude until you solve for the other forces in
the problem and impose the condition that ~a = ~0. (An exception is
if we’re told that static friction “just barely holds on / just barely
lets go,” i.e. has its maximum possible value.)





I Steel on steel µK is about half that of rubber on concrete,
and much less than that of µS for rubber on concrete.

I So a train can take a while to skid to a stop!

I Even more so if the tracks are wet: µK ≈ 0.1

I At µ = 0.1 on level ground: 360 m to stop from 60 mph.

I At µ = 0.1 on 6◦ slope: not possible to stop.



A car of mass 1000 kg travels at constant speed 20 m/s on dry,
level pavement. The friction coeffs are µk = 0.8 and µs = 1.2.
What is the normal force exerted by the road on the car?

(A) 1000 N downward

(B) 1000 N upward

(C) 1000 N forward

(D) 1000 N backward

(E) 9800 N downward

(F) 9800 N upward

(G) 11800 N downward

(H) 11800 N upward



A car of mass 1000 kg is traveling (in a straight line) at a constant
speed of 20 m/s on dry, level pavement, with the cruise control
engaged to maintain this speed. The friction coefficients are
µk = 0.8 and µs = 1.2. The tires roll on the pavement without
slipping. What is the frictional force exerted by the road on the
car? (Let’s use g ≈ 10 m/s2 for simplicity here.)

(A) 8000 N backward

(B) 8000 N forward

(C) 8000 N upward

(D) 10000 N backward

(E) 10000 N forward

(F) 12000 N backward

(G) 12000 N forward

(H) It points forward, must have magnitude ≤ 12000 N, and has
whatever value is needed to counteract air resistance.



A car of mass 1000 kg is initially traveling (in a straight line) at
20 m/s on dry, level pavement, when suddenly the driver jams on
the (non-anti-lock) brakes, and the car skids to a stop with its
wheels locked. The friction coefficients are µk = 0.8 and µs = 1.2.
What is the frictional force exerted by the road on the car? (Let’s
use g ≈ 10 m/s2 for simplicity here.)

(A) 8000 N backward

(B) 8000 N forward

(C) 8000 N upward

(D) 10000 N backward

(E) 10000 N forward

(F) 12000 N backward

(G) 12000 N forward

(H) It points forward, must have magnitude ≤ 12000 N, and has
whatever value is needed to counteract air resistance.



Suppose that for rubber on dry concrete, µk = 0.8 and µs = 1.2.
If a car of mass m traveling at initial speed vi on a level road jams
on its brakes and skids to a stop with its wheels locked, how do I
solve for the length L of the skid marks? (Let’s use g ≈ 10 m/s2

for simplicity here.)

(A) use v2f = v2i + 2aL with vf = 0 and a = −2.0 m/s2

(B) use v2f = v2i + 2aL with vf = 0 and a = −4.0 m/s2

(C) use v2f = v2i + 2aL with vf = 0 and a = −6.0 m/s2

(D) use v2f = v2i + 2aL with vf = 0 and a = −8.0 m/s2

(E) use v2f = v2i + 2aL with vf = 0 and a = −10.0 m/s2

(F) use v2f = v2i + 2aL with vf = 0 and a = −12.0 m/s2

(G) use v2f = v2i + 2aL with vf = 0 and a = −14.0 m/s2



Suppose that for rubber tires on dry, level pavement, the friction
coefficients are µk = 0.8 and µs = 1.2. If you assume that the
forces between the ground and the tires are the same for all four
tires (4-wheel drive, etc.), what is a car’s maximum possible
acceleration for this combination of tires and pavement? (Let’s use
g ≈ 10 m/s2 for simplicity here.)

(A) 1.0 m/s2

(B) 5.0 m/s2

(C) 8.0 m/s2

(D) 10.0 m/s2

(E) 12.0 m/s2



Easier example (quickly, or skip)

How hard do you have to push a 1000 kg car (with brakes on, all
wheels, on level ground) to get it to start to slide? Let’s take
µS ≈ 1.2 for rubber on dry pavement.

FNormal = mg = 9800 N

F Static ≤ µSFN = (1.2)(9800 N) ≈ 12000 N

So the static friction gives out (hence car starts to slide) when
your push exceeds 12000 N.

How hard do you then have to push to keep the car sliding at
constant speed? Let’s take µK ≈ 0.8 for rubber on dry pavement.

FKinetic = µKF
N = (0.8)(9800 N) ≈ 8000 N



How far does your car slide on dry, level pavement if you jam on
the brakes, from 60 mph (27 m/s)?

FN = mg , FK = µKmg

a =? ∆x =?

(The math is worked out on the next slides, but we won’t go
through them in detail. It’s there for you to look at later.)



How far does your car slide on dry, level pavement if you jam on
the brakes, from 60 mph (27 m/s)?

FN = mg , FK = µKmg

a = −FK/m = −µKg = −(0.8)(9.8 m/s2) ≈ −8 m/s2

Constant force → constant acceleration from 27 m/s down to zero:

v2f = v2i + 2ax

x =
v2i
−2a

=
(27 m/s)2

2× (8 m/s2)
≈ 45 m

How much time elapses before you stop?

vf = vi + at ⇒ t =
27 m/s

8 m/s2
= 3.4 s



How does this change if you have anti-lock brakes (or good
reflexes) so that the tires never skid? Remember µS > µK . For
rubber on dry pavement, µS ≈ 1.2 (though there’s a wide range)
and µK ≈ 0.8. The best you can do is maximum static friction:

F S ≤ µSmg

a = −F S/m = −µSg = −(1.2)(9.8 m/s2) ≈ −12 m/s2

Constant force → constant acceleration from 27 m/s down to zero:

v2f = v2i + 2ax

x =
v2i
−2a

=
(27 m/s)2

2× (12 m/s2)
≈ 30 m

How much time elapses before you stop?

vf = vi + at ⇒ t =
27 m/s

12 m/s2
= 2.2 s

So you can stop in about 2/3 the time (and 2/3 the distance) if
you don’t let your tires skid. Or whatever µK/µS ratio is.



A Ch10 problem that may not fit

Calculate ~C · (~B − ~A) if ~A = 3.0î + 2.0ĵ , ~B = 1.0î − 1.0ĵ , and
~C = 2.0î + 2.0ĵ . Remember that there are two ways to compute a
dot product—choose the easier method in a given situation: one
way is ~P · ~Q = |~P|| ~Q| cosϕ, where ϕ is the angle between vectors
~P and ~Q, and the other way is ~P · ~Q = PxQx + PyQy .



A Ch10 problem that may not fit

A child rides her bike 1.0 block east and then
√

3 ≈ 1.73 blocks
north to visit a friend. It takes her 10 minutes, and each block is
60 m long. What are (a) the magnitude of her displacement,
(b) her average velocity (magnitude and direction), and (c) her
average speed?



Block sliding down inclined plane: try drawing free-body diagram.
Suppose some kinetic friction is present, but block still accelerates
downhill. Try drawing this, one step ahead of me.

First: let’s draw ~FG
E ,b for gravity.



Add gravity vector

Next decompose ~FG
E ,b into components ‖ and ⊥ to surface.



Decompose gravity vector: ‖ and ⊥ to surface

Next: add contact force “normal” (⊥) to surface.



Now add contact force “normal” (⊥) to surface

Next: add friction.



Now add friction (‖ to surface, opposing relative motion)



The block shown in this
free-body diagram is

(A) at rest.

(B) sliding downhill at
constant speed.

(C) sliding downhill and
speeding up.

(D) sliding downhill and
slowing down.

(E) sliding uphill and
speeding up.

(F) sliding uphill and
slowing down.



How would I change this free-body diagram . . .

if the block were at rest?



How would I change this free-body diagram . . .

if the block were sliding downhill at constant speed?



How would I change this free-body diagram . . .

if the block were sliding downhill and slowing down?



How would I change this free-body diagram . . .

if the block were sliding uphill and slowing down?



Another Chapter 10 reading question:

You’ve slammed on the brakes, and your car is skidding to a stop
on a steep and slippery winter road. Other things being equal, will
the car come to rest more quickly if it is traveling uphill or if it is
traveling downhill? Why? (Consider FBD for each case.)



An object “O” of mass m slides down an inclined surface “S” at
constant velocity. What is the magnitude of the (kinetic)
frictional force F k

so exerted by the surface on the object?

(A) F k
so = mg

(B) F k
so = mg sin θ

(C) F k
so = mg cos θ

(D) F k
so = mg tan θ

(E) F k
so = µkmg

(F) F k
so = µkmg sin θ

(G) F k
so = µkmg cos θ

(H) F k
so = µkmg tan θ



An object “O” of mass m slides down an inclined surface “S” at
constant velocity. What is the magnitude of the gravitational
force F g

eo exerted by Earth on the object?

(A) F g
eo = mg

(B) F g
eo = mg sin θ

(C) F g
eo = mg cos θ

(D) F g
eo = mg tan θ

(E) F g
eo = µkmg

(F) F g
eo = µkmg sin θ

(G) F g
eo = µkmg cos θ

(H) F g
eo = µkmg tan θ



An object “O” of mass m slides down an inclined surface “S” at
constant velocity. Let the x-axis point downhill. What is the
magnitude of the downhill (tangential) component F g

eo,x of the
gravitational force exerted by Earth on the object?

(A) F g
eo,x = mg

(B) F g
eo,x = mg sin θ

(C) F g
eo,x = mg cos θ

(D) F g
eo,x = mg tan θ

(E) F g
eo,x = µkmg

(F) F g
eo,x = µkmg sin θ

(G) F g
eo,x = µkmg cos θ

(H) F g
eo,x = µkmg tan θ



An object “O” of mass m slides down an inclined surface “S” at
constant velocity. What is the magnitude of the normal force F n

so

exerted by the surface on the object?

(A) F n
so = mg

(B) F n
so = mg sin θ

(C) F n
so = mg cos θ

(D) F n
so = mg tan θ

(E) F n
so = µkmg

(F) F n
so = µkmg sin θ

(G) F n
so = µkmg cos θ

(H) F n
so = µkmg tan θ



Since object “O” slides down surface “S” at constant velocity, the
forces on O must sum vectorially to zero. How do I express this
fact for the forces acting along the downhill (tangential) axis?

(A) µkmg = mg cos θ

(B) µkmg = mg sin θ

(C) µkmg cos θ = mg

(D) µkmg sin θ = mg

(E) µkmg cos θ = mg sin θ

(F) µkmg sin θ = mg cos θ

(G) mg sin θ = mg cos θ



Suppose friction holds object “O” at rest on surface “S.” Which
statement is true?

(A) mg sin θ = F s
so = µkmg cos θ

(B) mg sin θ = F s
so = µsmg cos θ

(C) mg sin θ = F s
so ≤ µkmg cos θ

(D) mg sin θ = F s
so ≤ µsmg cos θ

(E) mg cos θ = F s
so = µkmg sin θ

(F) mg cos θ = F s
so = µsmg sin θ

(G) mg cos θ = F s
so ≤ µkmg sin θ

(H) mg cos θ = F s
so ≤ µsmg sin θ



Suppose friction holds object “O” at rest on surface “S.” Then I
gradually increase θ until the block just begins to slip. Which
statement is true at the instant when the block starts slipping?

(A) mg sin θ = F s
so = µkmg cos θ

(B) mg sin θ = F s
so = µsmg cos θ

(C) mg sin θ = F s
so ≤ µkmg cos θ

(D) mg sin θ = F s
so ≤ µsmg cos θ

(E) mg cos θ = F s
so = µkmg sin θ

(F) mg cos θ = F s
so = µsmg sin θ

(G) mg cos θ = F s
so ≤ µkmg sin θ

(H) mg cos θ = F s
so ≤ µsmg sin θ



Friction on inclined plane

Why do I “cross off” the downward gravity arrow?



Take x-axis to be downhill, y -axis to be upward ⊥ from surface.

~FG
⊥ = −mg cos θ ĵ , ~FN = +mg cos θ ĵ

~FG
‖ = +mg sin θ î

If block is not sliding then friction balances downhill gravity:

~F S = −mg sin θ î

(I’ll skip this slide, but it’s here for reference.)



Magnitude of “normal” force (“normal” is a synonym for
“perpendicular”) between surfaces is

FN = mg cos θ

Magnitude of static friction must be less than maximum:

F S ≤ µSF
N = µS mg cos θ

Block begins sliding when downhill component of gravity equals
maximum magnitude of static friction . . .



Block begins sliding when downhill component of gravity equals
maximum magnitude of static friction:

µS mg cos θ = mg sin θ

µS =
mg sin θ

mg cos θ

µS = tan θ



A Ch10 problem that may not fit

The coefficient of static friction of tires on ice is about 0.10.
(a) What is the steepest driveway on which you could park under
those circumstances? (b) Draw a free-body diagram for the car
when it is parked (successfully) on an icy driveway that is just a
tiny bit less steep than this maximum steepness. [We might want
to do (b) before we do (a).]

Answering part (a) starts by expressing (in math) which statement:

(A) (total gravitational force on car) equals (kinetic friction)

(B) (total gravitational force on car) equals (largest possible value
of static friction)

(C) (downhill component of gravity) equals (kinetic friction)

(D) (downhill component of gravity) equals (largest possible value
of static friction)



A Ch10 problem that may not fit

A fried egg of inertia m slides (at constant speed) down a Teflon
frying pan tipped at an angle θ above the horizontal. [This only
works if the angle θ is just right.] (a) Draw the free-body diagram
for the egg. Be sure to include friction. (b) What is the “net force”
(i.e. the vector sum of forces) acting on the egg? (c) How do
these answers change if the egg is instead speeding up as it slides?



A heavy crate has plastic skid
plates beneath it and a tilted
handle attached to one side.
Which requires a smaller force
(directed along the diagonal
rod of the handle) to move the
box? Why?

(A) Pushing the crate is easier
than pulling.

(B) Pulling the crate is easier
than pushing.

(C) There is no difference.



Example (tricky!) problem

A woman applies a constant force to pull a 50 kg box across a
floor at constant speed. She applies this force by pulling on a
rope that makes an angle of 37◦ above the horizontal. The friction
coefficient between the box and the floor is µk = 0.10.

(a) Find the tension in the rope.

(b) How much work does the woman do in moving the box 10 m?

What are all of the forces acting on the box? Try drawing your
own FBD for the box. It’s tricky!



free-body diagram for box

What are all of the forces acting on the box? Try drawing your
own FBD for the box. It’s tricky!

(I should redraw the RHS of this diagram on the board.)



find tension in rope

Step one: If T is the tension in the rope, then what is the normal
force (by floor on box)?

(A) FN = mg

(B) FN = mg + T cos θ

(C) FN = mg + T sin θ

(D) FN = mg − T cos θ

(E) FN = mg − T sin θ



find tension in rope

Step two: what is the frictional force exerted by the floor on the
box (which is sliding across the floor at constant speed)?

(A) FK = µK (mg − T sin θ)

(B) FK = µK (mg − T cos θ)

(C) FK = µS(mg − T sin θ)

(D) FK = µS(mg − T cos θ)

(E) FK = (mg − T sin θ)

(F) FK = (mg − T cos θ)



find tension in rope

Step three: how do I use the fact that the box is moving at
constant velocity (and hence is not accelerating)?

(A) T = FK = µK (mg − T sin θ)

(B) T cos θ = FK = µK (mg − T sin θ)

(C) T sin θ = FK = µK (mg − T sin θ)



solution (part a): find tension in rope

Force by rope on box has upward vertical component T sin θ. So the

normal force (by floor on box) is FN = mg − T sin θ .

Force of friction is FK = µK (mg − T sin θ) . To keep box sliding at

constant velocity, horizontal force by rope on box must balance FK .

T cos θ = FK = µK (mg − T sin θ) ⇒ T =
µKmg

cos θ + µK sin θ

This reduces to familiar T = µKmg if θ = 0◦ (pulling horizontally) and
even reduces to a sensible T = mg if θ = 90◦ (pulling vertically).

Plugging in θ = 37◦, so cos θ = 4/5 = 0.80, sin θ = 3/5 = 0.60,

T =
(0.10)(50 kg)(9.8 m/s2)

(0.80) + (0.10)(0.60)
= 57 N



solution (part b): work done by pulling for 10 meters

In part (a) we found tension in rope is T = 57 N and is oriented
at an angle θ = 36.9◦ above the horizontal.

In 2D, work is displacement times component of force along
direction of displacement (which is horizontal in this case). So
the work done by the rope on the box is

W = ~Frb ·∆~rb
This is the dot product (or “scalar product”) of the force ~Frb (by
rope on box) with the displacement ∆~rb of the point of application
of the force.



In part (a) we found tension in rope is T = 57 N and is oriented
at an angle θ = 36.9◦ above the horizontal.

What is the work done by the rope on the box by pulling the box
across the floor for 10 meters? (Assume my arithmetic is correct.)

(In two dimensions, work is the dot product of the force ~Frb with
the displacement ∆~rb of the point of application of the force.)

(A) W = (10 m)(T ) = (10 m)(57 N) = 570 J

(B) W = (10 m)(T cos θ) = (10 m)(57 N)(0.80) = 456 J

(C) W = (10 m)(T sin θ) = (10 m)(57 N)(0.60) = 342 J

(D) W = (8.0 m)(T cos θ) = (8.0 m)(57 N)(0.80) = 365 J

(E) W = (8.0 m)(T sin θ) = (8.0 m)(57 N)(0.60) = 274 J



Repeat, now that we’ve analyzed this quantitatively

A heavy crate has plastic skid
plates beneath it and a tilted
handle attached to one side.
Which requires a smaller force
(directed along the diagonal
rod of the handle) to move the
box? Why?

(A) Pushing the crate is easier
than pulling.

(B) Pulling the crate is easier
than pushing.

(C) There is no difference.


