
Physics 8 — Wednesday, September 25, 2019

I Remember homework #4 due this Friday, at the start of class.
It covers Chapters 6, 7, 8.

I Homework study/help sessions: Greg is in DRL 3C4
Wednesdays 4–6pm. Bill is in DRL 2C4 Thursdays 6–8pm.

I For today (though we won’t get to it until next week), you
read the first half of Ch10 (motion in a plane).

I Thanks to Jerod B, here’s a neat video showing that the CoM
of a dropped slinky falls at acceleration g , even though the
top and bottom of the slinky do not move in unison:
https://www.youtube.com/watch?v=eCMmmEEyOO0&t=43

super-sized version (harder to see than original version):
https://www.youtube.com/watch?v=JsytnJ_pSf8&t=88

https://www.youtube.com/watch?v=eCMmmEEyOO0&t=43
https://www.youtube.com/watch?v=JsytnJ_pSf8&t=88


Since Monday, we are finally talking about forces

I The force concept quantifies interaction between two objects.

I Forces always come in “interaction pairs.” The force exerted
by object “A” on object “B” is equal in magnitude and
opposite in direction to the force exerted by B on A:

~FAB = −~FBA

I The acceleration of object “A” is given by the vector sum of
the forces acting on A, divided by the mass of A:

~aA =

∑ ~F(on A)

mA

I The vector sum of the forces acting on an object equals the
rate of change of the object’s momentum:∑

~F(on A) =
d~pA
dt



I An object whose momentum is not changing is in translational
equilibrium. We’ll see later that this will be a big deal for the
members of a structure! To achieve this, we will want all
forces acting on each member to sum vectorially to zero.

I The unit of force is the newton. 1 N = 1 kg ·m/s2.

I Free-body diagrams depict all of the forces acting on a given
object. They are used all the time in analyzing structures!

I The force exerted by a compressed or stretched spring is
proportional to the displacement of the end of the spring
w.r.t. its relaxed value x0. k is “spring constant.”

F spring
x = −k(x − x0)

I When a rope is held taut, it exerts a force called the tension
on each of its ends. Same magnitude T on each end.



Tension in cables (repeated from Monday)
I A large category of physics problems (and even architectural

structures, e.g. a suspension bridge) involves two objects
connected by a rope, a cable, a chain, etc.

I These things (cables, chains, ropes) can pull but can’t push.
There are two cables in this figure:



Tension in cables

I Usually the cables in physics problems are considered light
enough that you don’t worry about their inertia (we pretend
m = 0), and stiff enough that you don’t worry about their
stretching when you pull on them (we pretend k =∞).

I The cable’s job is just to transmit a force from one end to the
other. We call that force the cable’s tension, T .

I A cable always pulls on both ends with same magnitude (T ),
though in opposite directions. [Formally: we neglect the
cable’s mass, and the cable’s acceleration must be finite.]

I (We stopped here on Monday.)

I E.g. hang basketball from ceiling. Cable transmits mg to
ceiling. Gravity pulls ball down. Tension pulls ball up. Forces
on ball add (vectorially) to zero.

I Let’s try an example.



Two blocks of equal mass are pulled to the right by a constant
force, which is applied by pulling at the arrow-tip on the right. The
blue lines represent two identical sections of rope (which can be
considered massless). Both cables are taut, and friction (if any) is
the same for both blocks. What is the ratio of T1 to T2?

(A) zero: T1 = 0 and T2 6= 0.
(B) T1 = 1

2T2

(C) T1 = T2

(D) T1 = 2T2

(E) infinite: T2 = 0 and T1 6= 0.

It’s worth drawing an FBD first for the two-mass system, then for
the left mass, then for the right mass.



Three blocks of equal mass are pulled to the right by a constant
force. The blocks are connected by identical sections of rope
(which can be considered massless). All cables are taut, and
friction (if any) is the same for all blocks. What is the ratio of T1

to T2?

(A) T1 = 1
3T2

(B) T1 = 2
3T2

(C) T1 = T2

(D) T1 = 3
2T2

(E) T1 = 2T2

(F) T1 = 3T2



Three blocks of equal mass are pulled to the right by a constant
force. The blocks are connected by identical sections of rope
(which can be considered massless). All cables are taut, and
friction (if any) is the same for all blocks. What is the ratio of T1

to T3?

(A) T1 = 1
3T3

(B) T1 = 2
3T3

(C) T1 = T3

(D) T1 = 3
2T3

(E) T1 = 2T3

(F) T1 = 3T3



Atwood machine — discuss with your neighbors

A contraption something like this appears in HW4 (but with a
spring added, to keep things interesting).

I Why aren’t the two masses accelerating?

I What is the tension in the cable when the two masses are
equal (both 5.0 kg) and stationary, as they are now?

I If I make one mass equal 5.0 kg and the other mass equal
5.1 kg, what will happen? Can you predict what the
acceleration will be?

I If I make one mass equal 5.0 kg and the other mass equal
6.0 kg, will the acceleration be larger or smaller than in the
previous case?

I Try drawing a free-body diagram for each of the two masses

I By how much do I change the gravitational potential energy of
the machine+Earth system when I raise the 6 kg mass 1 m?



I Two more comments:

I This machine was originally invented as a mechanism for
measuring g and for studying motion with constant
acceleration.

I The same concept is used by the “counterweight” in an
elevator for a building.



Atwood machine: take m1 > m2

Pause here: how can we solve for ax? Try it before we go on.



Atwood machine: write masses’ equations of motion

m1g − T = m1ax

T −m2g = m2ax

Solve second equation for T ; plug T
into first equation; solve for ax :

T = m2ax + m2g ⇒ m1g − (m2ax + m2g) = m1ax ⇒

(m1 −m2)g = (m1 + m2)ax ⇒ ax =
m1 −m2

m1 + m2
g

For m2 = 0, ax = g (just like picking up m1 and dropping it)

For m1 ≈ m2, ax � g : small difference divided by large sum.



Atwood machine: write masses’ equations of motion
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ax =
m1 −m2

m1 + m2
g

For example, m1 = 4.03 kg, m2 = 3.73 kg:

ax =
m1 −m2

m1 + m2
g =

(
0.30 kg

7.76 kg

)(
9.8 m/s2

)
= 0.38 m/s2

How long does it take m1 to fall 2 meters?

x =
ax t

2

2
⇒ t =

√
2x

ax
=

√
(2)(2 m)

(0.38 m/s2)
≈ 3.2 s
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You can also solve for T if you like (eliminate ax), to find the
tension while the two masses are free to accelerate (no interaction
with my hand or the floor).

Start from masses’ equations of motion:

m1g − T = m1ax , T −m2g = m2ax

Eliminate ax :

m1g − T

m1
=

T −m2g

m2
⇒ m1m2g −m2T = m1T −m1m2g

⇒ 2m1m2g = (m1 + m2)T ⇒ T =
2m1m2

m1 + m2
g

consider extreme cases: m2 = m1 vs. m2 � m1.



HW4 / problem 7: tricky!
7*. A modified Atwood machine is shown below. Each of the three
blocks has the same inertia m. One end of the vertical spring,
which has spring constant k, is attached to the single block, and
the other end of the spring is fixed to the floor. The positions of
the blocks are adjusted until the spring is at its relaxed length.
The blocks are then released from rest. What is the acceleration of
the two blocks on the right after they have fallen a distance D?



(we stopped before this.)
In the 17th century, Otto von Güricke, a physicist in Magdeburg,
fitted two hollow bronze hemispheres together and removed the air
from the resulting sphere with a pump. Two eight-horse teams
could not pull the halves apart even though the hemispheres fell
apart when air was readmitted. Suppose von Güricke had tied both
teams of horses to one side and bolted the other side to a giant
tree trunk. In this case, the tension on the hemispheres would be

(A) twice

(B) exactly the same as

(C) half

what it was before.

(To avoid confusion, you can replace the phrase “the hemispheres”
with the phrase “the cable” if you like. The original experiment was
a demonstraton of air pressure, but we are interested in tension.)



Suppose a horse can pull 1000 N

~FA on B = −~FB on A

|~FA on B | = |~FB on A| = 1000 N

T = 1000 N

~aA = ~0

~aB = ~0

The acceleration of each horse is zero. What are the two
horizontal forces acting on horse A? What are the two horizontal
forces acting on horse B?



Suppose tree stays put, no matter how hard horse pulls

~FA on tree = −~Ftree on A

|~FA on tree| = |~Ftree on A| = 1000 N

T = 1000 N

~aA = ~0

What are the two horizontal forces acting on horse A?



Suppose tree stays put, no matter how hard horses pull. Somehow
we attach both horses to the left end of the same cable.

~FA+B on tree = −~Ftree on A+B

|~FA+B on tree| = |~Ftree on A+B | = 2000 N

T = 2000 N

~ahorsesA+B = ~0

What are the external forces acting on the two-horse system
(system = horse A + horse B)?



Horse C loses his footing when he pulls > 1000 N

|~FA+B on C| = |~FC on A+B | = 2000 N

T = 2000 N

Force of ground on C is 1000 N to the right. Tension pulls on C
2000 N to the left. C accelerates to the left.

| ~aC | = (2000 N− 1000 N)/mC



Estimate the spring constant of your car springs. (Experiment: sit
on one fender.)

(What do you think?)



When a 5.0 kg box is suspended from a spring, the spring stretches
to 1.0 m beyond its equilibrium length. In an elevator accelerating
upward at 0.98 m/s2 (that’s “0.1 g”), how far will the spring
stretch with the same box attached? (Assume that the spring
adjusts such that the box and the elevator have the same
acceleration.)

(A) 0.50 m

(B) 0.90 m

(C) 1.0 m

(D) 1.1 m

(E) 1.2 m

(F) 1.9 m

(G) 2.0 m

(By the way: When a tall building sways back and forth in the
wind, the uncomfortable acceleration experienced by the occupants
is often measured as a fraction of “g .”)



Let’s start by drawing a FBD for the box when the elevator is not
accelerating.



F c
sb,x + FG

Eb,x = max = 0

F c
sb,x = −k (x − x0) = −k(−1 meter) FG

Eb,x = −mg

+k(1 meter)−mg = max = 0

Next, what happens if elevator is accelerating upward at 1 m/s2?



F c
sb,x + FG

Eb,x = max = 0

F c
sb,x = −k (x − x0) = −k(−1 meter) FG

Eb,x = −mg

+k(1 meter)−mg = max = 0

Next, what happens if elevator is accelerating upward at 1 m/s2?



F c
sb,x + FG

Eb,x = max = +1 m/s2

F c
sb,x = −k (x − x0) FG

Eb,x = −mg

−k(x − x0)−mg = max = +0.1mg

combine with +k(1 meter)−mg = 0 from last page



−k(x − x0)−mg = max = +0.1g ⇒ −k(x − x0) = +1.1mg

combine with +k(1 meter)−mg = 0 ⇒ +k(1 meter) = mg

Divide two boxed equations: get x − x0 = −1.1 meters

So the spring is now stretching 1.1 meters beyond its relaxed
length (vs. 1.0 meters when ax = 0).

The upward force exerted by the spring on the box is m(g + ax).



When a 5.0 kg box is suspended from a spring, the spring stretches
to 1.0 m beyond its equilibrium length. In an elevator accelerating
upward at 0.98 m/s2, how far will the spring stretch with the same
box attached? (Assume that the spring adjusts such that the box
and the elevator have the same acceleration.)

(A) 0.50 m

(B) 0.90 m

(C) 1.0 m

(D) 1.1 m

(E) 1.2 m

(F) 1.9 m

(G) 2.0 m



(Begin digression.)



Dissipative / incoherent / irreversible

A simple ball /
spring model of
the atoms in a
solid.

This is
sometimes a
useful picture
to keep in your
head.



Dissipative / incoherent / irreversible

2D version for
simplicity

illustrate
“reversible”
and
“irreversible”
deformation
with e.g.
marbles and
egg crate



Dissipative / incoherent / irreversible

I showed you once before my low-tech animation of two objects in
a totally inelastic collision. Collision dissipates coherent motion
(kinetic energy) into incoherent vibration of atoms (thermal
energy)

https://youtu.be/SJIKCmg2Uzg

https://youtu.be/SJIKCmg2Uzg


Here’s a high-speed movie of a (mostly) reversible process a golf
ball bouncing off of a wall at 150 mph.

https://www.youtube.com/watch?v=AkB81u5IM3I

https://www.youtube.com/watch?v=AkB81u5IM3I


(End digression.)



Physics 8 — Wednesday, September 25, 2019
I Remember homework #4 due this Friday, at the start of class.

It covers Chapters 6, 7, 8.
I Homework study/help sessions: Greg is in DRL 3C4

Wednesdays 4–6pm. Bill is in DRL 2C4 Thursdays 6–8pm.
I For today (though we won’t get to it until next week), you

read the first half of Ch10 (motion in a plane).
I If you have little or no coding experience and you’re interested

in an XC option to learn Python for quantitative tasks like
graphing and modeling data, email me ASAP.

I Wolfram Mathematica is free (site license) for SAS and
Wharton students. I have some very helpful self-study
Mathematica materials you can do for XC. Email if interested.

I If you’re interested in learning to do a bit of Python coding in
a drawing/animation system called “Processing” made by and
for visual artists, you can look at my Fall 2017
day-before-Thanksgiving lecture here:
http://xray.hep.upenn.edu/wja/p008/2017/files/

phys8_notes_20171122.pdf

http://xray.hep.upenn.edu/wja/p008/2017/files/phys8_notes_20171122.pdf
http://xray.hep.upenn.edu/wja/p008/2017/files/phys8_notes_20171122.pdf

