
Physics 8 — Friday, September 27, 2019

I Turn in HW#4. Pick up handout for HW#5, which covers
Ch9 and starts Ch10.

I For Monday, finish reading Ch10 (motion in a plane).

I If you have little or no coding experience and you’re interested
in an XC option to learn Python for quantitative tasks like
graphing and modeling data, email me ASAP.

I Wolfram Mathematica is free (site license) for SAS and
Wharton students. I have some very helpful self-study
Mathematica materials you can do for XC. Email if interested.

I If you’re interested in learning to do a bit of Python coding in
a drawing/animation system called “Processing” made by and
for visual artists, you can look at my Fall 2017
day-before-Thanksgiving lecture here:
http://xray.hep.upenn.edu/wja/p008/2017/files/

phys8_notes_20171122.pdf

I Before class: draw FBDs (copy slide 8 to board)

http://xray.hep.upenn.edu/wja/p008/2017/files/phys8_notes_20171122.pdf
http://xray.hep.upenn.edu/wja/p008/2017/files/phys8_notes_20171122.pdf


(Begin digression.)



Dissipative / incoherent / irreversible

A simple ball /
spring model of
the atoms in a
solid.

This is
sometimes a
useful picture
to keep in your
head.



Dissipative / incoherent / irreversible

2D version for
simplicity

illustrate
“reversible”
and
“irreversible”
deformation
with e.g.
marbles and
egg crate



Dissipative / incoherent / irreversible

I showed you once before my low-tech animation of two objects in
a totally inelastic collision. Collision dissipates coherent motion
(kinetic energy) into incoherent vibration of atoms (thermal
energy)

https://youtu.be/SJIKCmg2Uzg

https://youtu.be/SJIKCmg2Uzg


Here’s a high-speed movie of a (mostly) reversible process a golf
ball bouncing off of a wall at 150 mph.

https://www.youtube.com/watch?v=AkB81u5IM3I

https://www.youtube.com/watch?v=AkB81u5IM3I


(End digression.)



Work with your neighbor to draw a FBD for mass 2. Then draw a
FBD for mass 1. Assume that ~a = ~0 for both masses.





Next: How would these two diagrams change if we imagine that
the ceiling is actually the ceiling of an elevator that is accelerating
upward at ax = +1.96m/s2 (that’s 0.2g — you can round off).



How do you use these two FBDs to write Newton’s 2nd law for
each of the two masses?



Note: because the length of an (idealized) taut cable doesn’t
change as its tension increases, a1x = a2x . Distance between
blocks only changes if the cable goes slack (no longer in tension).



(Skip to slide 23.)



HW4 / problem 9: slightly modified (skip?)

9*. A tugboat pulls two barges (connected in series, like a train,
with taut ropes as couplings) down a river. The barge connected
to the tugboat, carrying coal, has inertia m1. The other barge,
carrying pig iron, has inertia m2. The frictional force exerted by
the water on the coal barge is F f

w1, and that exerted by the water
on the pig-iron barge is F f

w2. The common acceleration of all three
boats is ax . Even though the ropes are huge, the gravitational
force exerted on them is negligible, as are the ropes’ inertias. How
can you solve for the tension in each rope?



HW4 / problem 10 (modified): (skip?)

10*. A red cart of mass mred is connected to a green cart of mass
mgreen by a relaxed spring of spring constant k . The green cart is
resting against a blue cart of mass mblue. All are on a low-friction
track. You push the red cart to the right, in the direction of the
green cart, with a constant force F c

you,green. (a) What is the
acceleration of the center-of-mass of the three-cart system?
(b) What is the acceleration of each cart the instant you begin
to push? (c) What is the acceleration of each cart the instant
when the spring is compressed a distance D with respect to its
relaxed length?



(skip?)

Estimate the spring constant of your car springs. (Experiment: sit
on one fender.)

(What do you think?)



(skip)
When a 5.0 kg box is suspended from a spring, the spring stretches
to 1.0 m beyond its equilibrium length. In an elevator accelerating
upward at 0.98 m/s2 (that’s “0.1 g”), how far will the spring
stretch with the same box attached?

(A) 0.50 m

(B) 0.90 m

(C) 1.0 m

(D) 1.1 m

(E) 1.2 m

(F) 1.9 m

(G) 2.0 m

(By the way: When a tall building sways back and forth in the
wind, the uncomfortable acceleration experienced by the occupants
is often measured as a fraction of “g .”)



(skip)

Let’s start by drawing a FBD for the box when the elevator is not
accelerating.



(skip)

F c
sb,x + FG

Eb,x = max = 0

F c
sb,x = −k (x − x0) = −k(−1 meter) FG

Eb,x = −mg

+k(1 meter)−mg = max = 0

Next, what happens if elevator is accelerating upward at 1 m/s2?



(skip)

F c
sb,x + FG

Eb,x = max = 0

F c
sb,x = −k (x − x0) = −k(−1 meter) FG

Eb,x = −mg

+k(1 meter)−mg = max = 0

Next, what happens if elevator is accelerating upward at 1 m/s2?



(skip)

F c
sb,x + FG

Eb,x = max = +1 m/s2

F c
sb,x = −k (x − x0) FG

Eb,x = −mg

−k(x − x0)−mg = max = +0.1mg

combine with +k(1 meter)−mg = 0 from last page



(skip)

−k(x − x0)−mg = max = +0.1g ⇒ −k(x − x0) = +1.1mg

combine with +k(1 meter)−mg = 0 ⇒ +k(1 meter) = mg

Divide two boxed equations: get x − x0 = −1.1 meters

So the spring is now stretching 1.1 meters beyond its relaxed
length (vs. 1.0 meters when ax = 0).

The upward force exerted by the spring on the box is m(g + ax).



(skip)

When a 5.0 kg box is suspended from a spring, the spring stretches
to 1.0 m beyond its equilibrium length. In an elevator accelerating
upward at 0.98 m/s2, how far will the spring stretch with the same
box attached?

(A) 0.50 m

(B) 0.90 m

(C) 1.0 m

(D) 1.1 m

(E) 1.2 m

(F) 1.9 m

(G) 2.0 m



In the 17th century, Otto von Güricke, a physicist in Magdeburg,
fitted two hollow bronze hemispheres together and removed the air
from the resulting sphere with a pump. Two eight-horse teams
could not pull the halves apart even though the hemispheres fell
apart when air was readmitted. Suppose von Güricke had tied both
teams of horses to one side and bolted the other side to a giant
tree trunk. In this case, the tension on the hemispheres would be

(A) twice

(B) exactly the same as

(C) half

what it was before.

(To avoid confusion, you can replace the phrase “the hemispheres”
with the phrase “the cable” if you like. The original experiment was
a demonstraton of air pressure, but we are interested in tension.)



Suppose a horse can pull 1000 N

~FA on B = −~FB on A

|~FA on B | = |~FB on A| = 1000 N

T = 1000 N

~aA = ~0

~aB = ~0

The acceleration of each horse is zero. What are the two
horizontal forces acting on horse A? What are the two horizontal
forces acting on horse B?



Suppose tree stays put, no matter how hard horse pulls

~FA on tree = −~Ftree on A

|~FA on tree| = |~Ftree on A| = 1000 N

T = 1000 N

~aA = ~0

What are the two horizontal forces acting on horse A?



Suppose tree stays put, no matter how hard horses pull. Somehow
we attach both horses to the left end of the same cable.

~FA+B on tree = −~Ftree on A+B

|~FA+B on tree| = |~Ftree on A+B | = 2000 N

T = 2000 N

~ahorsesA+B = ~0

What are the external forces acting on the two-horse system
(system = horse A + horse B)?



Horse C loses his footing when he pulls > 1000 N

|~FA+B on C| = |~FC on A+B | = 2000 N

T = 2000 N

Force of ground on C is 1000 N to the right. Tension pulls on C
2000 N to the left. C accelerates to the left.

| ~aC | = (2000 N− 1000 N)/mC



Today, while we happen to have this rope attached to the ceiling, I
want to re-visit something (related to forces) that I demonstrated
on the first day of class. Believe it or not, this relates pretty
directly to architecture.

My friend and I both want to hang on to a rope by our hands,
perhaps because being up above the ground lets us peek over a tall
fence and see into an amazing new construction site next door.

We consider two different methods of hanging onto the rope. In
the first method, I hold the rope with my hands, about 5 meters
off the ground, and my friend (whose mass is the same as mine)
holds the rope with his hands, about 3 meters off the ground.

In the second method, I told the rope with my hands, as before,
and my friend holds onto my feet (instead of the rope).

Let’s draw a picture, to make it more clear.







The downward force exerted by my hands on the rope is . . .

(A) The same for both methods: equal to mg (m = my mass)

(B) The same for both methods: equal to 2mg

(C) Twice as much for 1st method (2mg vs. mg)

(D) Twice as much for 2nd method (2mg vs. mg)



Kansas City Hyatt Regency skywalk collapse

For more like this, read To Engineer is Human by Henry Petroski.



As designed, each of the two skywalks hangs onto the rope with its
own hands. As built, the lower skywalk’s hands are effectively
hanging onto the upper skywalk’s feet! So the upper skywalk’s grip
on the rope feels 2× larger force than in original design. Oops!



A real-world use for free-body diagrams! But these diagrams aren’t
careful to single out one object, to indicate clearly what that object
is, and to draw only the forces acting ON that object. (Alas.)

The author uses the symbol P for a “point” force (or point load,
or a “concentrated load”), as is the custom in engineering and
architecture. When you see “P” here, pretend it says “F” or “mg”
instead.



Upper skywalk loses its grip on the “rope”



Ch9: work. Two definitions of work

I Work equals the change in energy of a system due to external
forces. If the energy of a system increases, the (arithmetic
sum of) work done by external forces on the system is
positive; if the energy of a system decreases, the (sum of)
work done by external forces on the system is negative.

∆Esystem = Wdone ON system

I The work done by an external force ~F on a system (in one

dimension) is W =

∫
Fx(x) dx or just W = Fx ∆x for a

constant force. When the force and the “displacement of the
point of application of the force” point in the same (opposite)
direction, the work done by ~F is positive (negative).

Let’s initially focus on the second, more familiar, definition.



Chapter 9: first reading question

1. If you graph the work, W (x), done by a force on an object as a
function of the object’s position, x , what graphical feature
represents the force, F (x), exerted on the object?

(A) The force is the area under the work curve.

(B) The force is the slope of the work curve.

(C) The vertical axis, i.e. the height of the work curve.

(D) The second derivative.



Chapter 9: first reading question

1. If you graph the work done by a force on an object as a function
of the object’s position, what graphical feature represents the force
exerted on the object?

Since work equals the integral of force w.r.t. displacement,
W =

∫
Fxdx or W = Fx∆x , the force is equal to the work per

unit displacement. On a graph of W vs. x , the slope, dW /dx , is
equal to the force.



Suppose you want to ride your mountain bike up a steep hill. Two
paths lead from the base to the top, one twice as long as the
other. (Your bicycle has only one gear.) Compared to the average
force you would exert if you took the short path, the average force
you exert along the longer path is

(A) one-fourth as large.

(B) one-third as large.

(C) one-half as large.

(D) the same.

(E) twice as large.

(F) undetermined — it depends on the time taken

(Imagine how hard you have to press down on the pedals, on
average, to make the bike go up one path vs. the other. As a kid,
did you ever zig-zag up a really steep hill on your one-speed bike,
or if your multi-speed bike’s lowest gear was still not low enough?)



Imagine me towing Alfie up a steep hill behind my bicycle . . . .

https://youtu.be/Yigqi7zGCfQ

https://youtu.be/ewvet0I1YiM

https://youtu.be/Yigqi7zGCfQ
https://youtu.be/ewvet0I1YiM


A piano mover raises a 100 kg piano at
a constant speed using the pulley
system shown here. With how much
force is she pulling on the rope?
(Ignore friction and assume
g ≈ 10 m/s2.)

(A) 2000 N

(B) 1500 N

(C) 1000 N

(D) 750 N

(E) 500 N

(F) 200 N

(G) 50 N

(H) impossible to determine.



Block and tackle: “mechanical advantage”

This graphic shows a 2:1 mechanical advantage. The block &
tackle in the classroom shows a 4:1 advantage. How would you get
a HUGE mechanical advantage, like 1000:1 ? (Phys 009 topic.)





















A spring-loaded toy dart gun is used to shoot a dart straight up in
the air, and the dart reaches a maximum height of 8 m. The same
dart is shot straight up a second time from the same gun, but this
time the spring is compressed only half as far before firing. How far
up does the dart go this time (neglecting friction)?

(A) 1 m

(B) 2 m

(C) 4 m

(D) 8 m

(E) 16 m

(F) 32 m

(We used the last 2 minutes of class to ponder this question.)



Chapter 9 reading question

2. When you stand up from a seated position, you push down with
your legs. So then do you do negative work when you stand up?

“In this situation, we have 2 systems. Firstly, in the system of just
the person, the action of standing up will result in a loss of internal
or chemical energy, thereby resulting in a loss of system energy and
hence positive work (BY the system) [which implies negative work
done ON the system, by Earth’s gravitational force]. For the
system of the person and Earth, the action of standing up
increases the person’s potential energy at the expense of internal
energy. In this situation, there is no change in system energy and
therefore no work is done.”



Reading question 2 had no really simple answer

When you stand up from a seated position, you push down with your

legs. Does this mean you do negative work when you stand up?

Suppose “system” = me + Earth + floor + chair

I ∆K = 0

I ∆U = mg (∆x)my c.o.m. > 0

I ∆Ethermal = 0 (debatable but irrelevant)

I ∆Esource = −mg (∆x)my c.o.m. < 0

I W = 0

There are no external forces. Everything of interest is inside the
system boundary.



Let’s try choosing a different “system.”
When you stand up from a seated position, you push down with your

legs. Does this mean you do negative work when you stand up?

Suppose “system” = me + floor + chair

I ∆K = 0

I ∆U = 0 (UG undefined if Earth not in system)

I ∆Ethermal = 0 (debatable but irrelevant)

I ∆Esource = −mg (∆x)my c.o.m. < 0

I W = −mg (∆x)my c.o.m. < 0

External gravitational force, exerted by Earth on me, does negative
work on me. Point of application of this external force is my
body’s center of mass. Force points downward, but displacement is
upward. W < 0. System’s total energy decreases.



Let’s try answering a slightly different question.

When a friend stands me up from a chair (e.g. my knees are weak

today), does my friend do positive or negative work?

Suppose “system” = me + Earth + floor + chair

I ∆K = 0

I ∆U = mg (∆x)my c.o.m. > 0

I ∆Ethermal = 0 (debatable but irrelevant)

I ∆Esource = 0

I W = mg (∆x)my c.o.m. > 0

My friend applies an upward force beneath my arms. The point of
application of force is displaced upward.



Let’s include my friend as part of “the system.”

When a friend stands me up from a chair (e.g. my knees are weak

today), does my friend do positive or negative work?

Suppose “system” = me + Earth + floor + chair + friend

I ∆K = 0

I ∆U = mg (∆x)my c.o.m. > 0

I ∆Ethermal = 0 (debatable but irrelevant)

I ∆Esource = −mg (∆x)my c.o.m. < 0

I W = 0

There is no external force. Everything is within the system.



Back to the original reading question
When you stand up from a seated position, you push down with your

legs. Does this mean you do negative work when you stand up?

I think the work done ON the system BY my legs is either
positive (if my legs are considered “external” to the
me+Earth+floor system and are supplying the energy to lift me) or
zero (if my legs are part of the system).

Remember the one way we got a negative answer: In the case in
which Earth was not part of the system, we found that the external
force of Earth’s gravity did negative work on me. But I was
pushing Earth downward, away from me. I lost energy. So even in
this case (where the work done on me was negative), the work
done by me was positive.

Key point: what you call “work” depends on how you define “the
system.”



(Consider work done by whatever external force is causing the
object’s velocity to change.)



A few key ideas from Chapters 8 (force) and 9 (work)
Impulse (i.e. momentum change) delivered by external force:

force =
d(momentum)

dt
⇔ ~J =

∫
~Fexternal dt

External force exerted ON system:

force =
d(work)

dx
⇔ W =

∫
Fx dx

Force exerted BY spring, gravity, etc.:

force = −d(potential energy)

dx

∆Esystem = flow of energy into system = work done ON system:

work = ∆(energy) = ∆K + ∆U + ∆Esource + ∆Ethermal

Notice that work : energy :: impulse : momentum



Some equation sheet entries for Chapters 8+9
positron.hep.upenn.edu/physics8/files/equations.pdf

Work (external, nondissipative, 1D):

W =

∫
Fx(x) dx

which for a constant force is

W = Fx ∆x

Power is rate of change of energy:

P =
dE

dt

Constant external force, 1D:

P = Fxvx

G.P.E. near earth’s surface:

Ugravity = mgh

Force of gravity near earth’s surface
(force is −dUgravity

dx ):

Fx = −mg

Potential energy of a spring:

Uspring =
1

2
k(x − x0)2

Hooke’s Law (force is −dUspring

dx ):

Fby spring ON load = −k(x − x0)

positron.hep.upenn.edu/physics8/files/equations.pdf


A spring-loaded toy dart gun is used to shoot a dart straight up in
the air, and the dart reaches a maximum height of 8 m. The same
dart is shot straight up a second time from the same gun, but this
time the spring is compressed only half as far before firing. How far
up does the dart go this time (neglecting friction)?

(A) 1 m

(B) 2 m

(C) 4 m

(D) 8 m

(E) 16 m

(F) 32 m



Stretching a certain spring 0.10 m from its equilibrium length
requires 10 J of work. How much more work does it take to stretch
this spring an additional 0.10 m from its equilibrium length?

(A) No additional work

(B) An additional 10 J

(C) An additional 20 J

(D) An additional 30 J

(E) An additional 40 J



A block initially at rest is allowed to slide down a frictionless ramp
and attains a speed v at the bottom. To achieve a speed 2v at the
bottom, how many times as high must a new ramp be?

(A) 1

(B) 1.414

(C) 2

(D) 3

(E) 4

(F) 5

(G) 6



At the bowling alley, the ball-feeder mechanism must exert a force
to push the bowling balls up a 1.0 m long ramp. The ramp leads
the balls to a chute 0.5 m above the base of the ramp. About how
much force must be exerted on a 5.0 kg bowling ball?

(A) 200 N

(B) 100 N

(C) 50 N

(D) 25 N

(E) 5.0 N

(F) impossible to determine.



Suppose you drop a 1 kg rock from a height of 5 m above the
ground. During the time interval while the rock is slowing to a
stop (as the rock is hitting the ground), how much force does the
rock exert on the ground? (Take g ≈ 10 m/s2.)

(A) 0.2 N

(B) 5 N

(C) 50 N

(D) 100 N

(E) impossible to determine.



Physics 8 — Friday, September 27, 2019

I Turn in HW#4. Pick up handout for HW#5, which covers
Ch9 and starts Ch10.

I For Monday, finish reading Ch10 (motion in a plane).

I If you have little or no coding experience and you’re interested
in an XC option to learn Python for quantitative tasks like
graphing and modeling data, email me ASAP.

I Wolfram Mathematica is free (site license) for SAS and
Wharton students. I have some very helpful self-study
Mathematica materials you can do for XC. Email if interested.

I If you’re interested in learning to do a bit of Python coding in
a drawing/animation system called “Processing” made by and
for visual artists, you can look at my Fall 2017
day-before-Thanksgiving lecture here:
http://xray.hep.upenn.edu/wja/p008/2017/files/

phys8_notes_20171122.pdf

http://xray.hep.upenn.edu/wja/p008/2017/files/phys8_notes_20171122.pdf
http://xray.hep.upenn.edu/wja/p008/2017/files/phys8_notes_20171122.pdf

