
Physics 8 — Wednesday, October 23, 2019

I This week you’re reading Giancoli Ch9 (static equilibrium,
etc.), and O/K Ch1. In class, we’re still finishing up Mazur
Ch11 (motion in a circle), and today or Friday we’ll start
Ch12 (torque). You may want to buy one of my $10 used
copies of Onouye/Kane, which you can either keep or sell
back to me for $10 in December.

I HW7 due Friday. HW help W4–6pm 3C4, R6–8pm 2C4.

I How would you approach this problem?



How would you approach this problem? Discuss with your neighbor
while I set up a demonstration along the same lines . . .

(A) initial angular momentum of bucket equals final angular
momentum of cylinder + bucket

(B) initial G.P.E. equals final K.E. (translational for bucket +
rotational for cylinder)

(C) initial G.P.E. equals final K.E. of bucket

(D) initial G.P.E. equals final K.E. of cylinder

(E) initial K.E. of bucket equals final G.P.E.

(F) use torque = mgR to find constant angular acceleration



I What is the rotational inertia for a solid cylinder?

I How do you relate v of the bucket with ω of the cylinder?
Why is this true?

I What is the expression for the total kinetic energy?

I Why is angular momentum not the same for the initial and
final states?

I What are the two expressions for angular momentum used in
Chapter 11?

I Does anyone know (though this is in Chapter 12 and is tricky)
why using τ = mgR would not give the correct angular
acceleration? What if you used τ = TR, where T is the
tension in the rope?



Table 11.3. Also in “equation sheet”
http://positron.hep.upenn.edu/p8/files/equations.pdf

http://positron.hep.upenn.edu/p8/files/equations.pdf




How would you approach this problem? Discuss with neighbors!
Which (if any) of these statements is false ?

(A) I know the change in G.P.E from the initial to the desired final
states. So the initial K.E. (which is rotational) of the rod
needs to be at least this large.

(B) The book (or equation sheet) gives rotational inertia I for a
long, thin rod about its center. So I can use the parallel-axis
theorem to get I for the rod about one end.

(C) The angular momentum, L = Iω, is the same for the initial
and final states.

(D) Because the rod pivots about one end, the speed of the other
end is v = ω` (where ` is length of rod)

(E) None. (All of the above statements are true.)



The rotational inertia for a long, thin rod of length ` about a
perpendicular axis through its center is

I =
1

12
m`2

What is its rotational inertia about one end?

(A) 1
12m`

2

(B) 1
24m`

2

(C) 1
2m`

2

(D) 1
3m`

2

(E) 1
4m`

2

(F) 1
6m`

2

(We’ll repeat this question after some explanation.)



If an object revolves about an axis that does not pass through the
object’s center of mass (suppose axis has ⊥ distance d⊥ from
CoM), the rotational inertia is larger, because the object’s CoM
revolves around a circle of radius d⊥ and in addition the object
rotates about its own CoM.

This larger rotational inertia is given by the parallel axis theorem:

I = Icm + Md2
⊥

where Icm is the object’s rotational inertia about an axis (which
must be parallel to the new axis of rotation) that passes through
the object’s CoM.

(We’ll go over the parallel-axis theorem again next time. First I
want to make sure you know what you need for this week’s HW.)



The rotational inertia of a long, thin rod (whose thickness is
negligible compared with its length) of mass M and length L, for
rotation about its CoM, is

I =
1

12
ML2

Using the parallel axis theorem, what is the rod’s rotational inertia
for rotation about one end? (Click next page.)



The rotational inertia for a long, thin rod of length ` about a
perpendicular axis through its center is

I =
1

12
m`2

What is its rotational inertia about one end?

(A) 1
12m`

2

(B) 1
24m`

2

(C) 1
2m`

2

(D) 1
3m`

2

(E) 1
4m`

2

(F) 1
6m`

2



Table 11.3. Also in “equation sheet”
http://positron.hep.upenn.edu/p8/files/equations.pdf

http://positron.hep.upenn.edu/p8/files/equations.pdf




(In case you’re curious where that I = ML2/12 comes from.)



Let’s start by drawing an FBD (for the car) for the case where the
car’s speed is at exactly the value for which no friction at all is
needed to keep the car moving in its circular path. In that case,
what are the forces acting on the car?

Alongside the FBD, let’s draw (elevation view) the car on the
banked road. Let’s assume that the road curves to the left.



I Since the string’s length L stays constant, what
shape does the ball’s path trace out as it moves?

I Does the ball’s acceleration have a component
that points along the axis of the string? If so,
does its magnitude depend on the ball’s speed?

I What two forces are acting on the ball?

I Assuming that no energy is dissipated, how can
we relate the ball’s speed v to its height y ?

I Can you write m~a =
∑ ~F for the component of ~a

and
∑ ~F that points along the string?

(“small” ball ⇒ neglect the ball’s rotation about its own CoM)



How do I relate angle θ to speed v? Ei = mgL → E = 1
2mv2 + mgy

(A) 1
2mv2 = mg(L− y) = mgL(1− cos θ)

(B) 1
2mv2 = mg(L− y) = mgL(1− sin θ)

(C) 1
2mv2 = mg(L− y) = mgL cos θ

(D) 1
2mv2 = mg(L− y) = mgL sin θ

Hint: draw on the figure a vertical line of length L− y = yi − y

Next: write “radial” component of m~a =
∑ ~F to find T





When does the block lose contact with the sphere?

A small block of mass m slides
down a sphere of radius R,
starting from rest at the top.
The sphere is immobile, and
friction between the block and
the sphere is negligible. In terms
of m, g , R, and θ, determine:
(a) the K.E. of the block;
(b) the centripetal acceleration
of the block;
(c) the normal force exerted by
the sphere on the block.
(d) At what value of θ does the
block lose contact with the
sphere?



I Are the angles of the two strings
w.r.t. horizontal equal?

I Are the tensions in the two strings
equal? How do you know?

I What three forces act on the ball?

I Is the ball accelerating vertically?
Horizontally?

I Draw a FBD for the ball, showing
both horizontal (radial) and
vertical component of each force.

Notice that the ball’s speed v increases with time, until finally one
string breaks. Which one? (Which string’s tension is larger?)



(plan view — from above)

How would you approach this problem? Discuss with neighbors!

(A) The final K.E. (rotational+translational) equals the initial
K.E. of the ball.

(B) The initial momentum m~v of the ball equals the final
momentum (m + M)~v of the door+ball.

(C) The initial angular momentum L = r⊥mv of the ball w.r.t. the
hinge axis equals the final angular momentum L = Iω of the
door+ball.



I know that the rotational inertia of a thin rod of length L about a
perpendicular axis through its center is I = 1

12mL2. The rotational
inertia I to use for the final state here is

(A) I = ML2 + mL2

(B) I = 1
12ML2 + M(L2 )2 + m(23L)2

(C) I = 1
12ML2 + 2

3mL2

(D) I = 1
12ML2 + m(23L)2

(E) I = 1
12ML2 + mL2

(Challenge: Also think how the answer would change if the radius
of the putty ball were non-negligible. What if the thickness of the
door were non-negligible? Does the height of the door matter?)



Three different expressions for angular momentum:

L = Iω

L = r⊥ mv

L = r mv⊥

The second expression is telling you that momentum times lever
arm (w.r.t. the relevant pivot axis) equals angular momentum.

The second and third expressions are both simplified ways of
writing the more general (but more difficult) expression

~L = ~r × ~p





Where is the center of mass of this pinwheel-like object?



What is this object’s rotational inertia, for rotation about its center
of mass? Assume that all of the mass is concentrated in the
orange blobs, and assume that the orange blobs are “point
masses,” i.e. that their size is much smaller than R.



Suppose I have a solid disk of radius R and mass m. I rotate it
about its CoM, about an axis ⊥ to the plane of the page. What is
its rotational inertia? (If you don’t happen to remember — is it
bigger than, smaller than, or equal to mR2 ?)



Now I take the same disk, attach it to a string or a lightweight
stick of length D, and make the disk’s CoM go around in circles of
radius D. Is the mass now farther than or closer to the rotation axis
than in the original rotation (about CoM)? What happens to I ?



If an object revolves about an axis that does not pass through the
object’s center of mass (suppose axis has ⊥ distance D from
CoM), the rotational inertia is larger, because the object’s CoM
revolves around a circle of radius D and in addition the object
rotates about its own CoM.

This larger rotational inertia is given by the parallel axis theorem:

I = Icm + MD2

where Icm is the object’s rotational inertia about an axis (which
must be parallel to the new axis of rotation) that passes through
the object’s CoM.



Using the parallel axis theorem, what is the disk’s rotational inertia
about the displaced axis (the axis that is distance D away from the
CoM)?



Torque: the rotational analogue of force

Just as an unbalanced force causes linear acceleration

~F = m~a

an unbalanced torque causes rotational acceleration

τ = Iα

Torque is (lever arm) × (force)

τ = r⊥ F

where r⊥ is the “perpendicular distance” from the rotation axis to
the line-of-action of the force.
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