
Physics 8 — Monday, October 28, 2019
I This week, you’re reading Ch2 (statics) and Ch3 (determinate

systems: equilibrium, trusses, arches) of Onouye/Kane. Feel
free to buy one of my $10 used copies if you wish.

I After spending this week’s class time on torque, we’ll spend 4
weeks applying the ideas of forces, vectors, and torque to the
analysis of architectural structures. Fun reward for your work!



Three different expressions for angular momentum:

L = Iω

L = r⊥ mv

L = r mv⊥

The second expression is telling you that momentum times lever
arm (w.r.t. the relevant pivot axis) equals angular momentum.

The second and third expressions are both simplified ways of
writing the more general (but more difficult) expression

~L = ~r × ~p





Where is the center of mass of this pinwheel-like object?



What is this object’s rotational inertia, for rotation about its center
of mass? Assume that all of the mass is concentrated in the
orange blobs, and assume that the orange blobs are “point
masses,” i.e. that their size is much smaller than R.



Suppose I have a solid disk of radius R and mass m. I rotate it
about its CoM, about an axis ⊥ to the plane of the page. What is
its rotational inertia? (If you don’t happen to remember — is it
bigger than, smaller than, or equal to mR2 ?)



Now I take the same disk, attach it to a string or a lightweight
stick of length D, and make the disk’s CoM go around in circles of
radius D. Is the mass now farther than or closer to the rotation axis
than in the original rotation (about CoM)? What happens to I ?



If an object revolves about an axis that does not pass through the
object’s center of mass (suppose axis has ⊥ distance D from
CoM), the rotational inertia is larger, because the object’s CoM
revolves around a circle of radius D and in addition the object
rotates about its own CoM.

This larger rotational inertia is given by the parallel axis theorem:

I = Icm + MD2

where Icm is the object’s rotational inertia about an axis (which
must be parallel to the new axis of rotation) that passes through
the object’s CoM.



Using the parallel axis theorem, what is the disk’s rotational inertia
about the displaced axis (the axis that is distance D away from the
CoM)?



Torque: the rotational analogue of force

Just as an unbalanced force causes linear acceleration

~F = m~a

an unbalanced torque causes rotational acceleration

τ = Iα

Torque is (lever arm) × (force)

τ = r⊥ F

where r⊥ is the “perpendicular distance” from the rotation axis to
the line-of-action of the force.



position

~r = (x , y)

velocity

~v = (vx , vy ) =
d~r

dt

acceleration

~a = (ax , ay ) =
d~v

dt

momentum

~p = m~v

force
~F = m~a

rotational coordinate

ϑ = s/r

rotational velocity

ω = dϑ/dt

rotational acceleration

α = dω/dt

angular momentum

L = Iω

L = r⊥ mv

torque
τ = Iα

τ = r⊥ F



I wind a string around a coffee can of radius R = 0.05 m. (That’s
5 cm.) Friction prevents the string from slipping. I apply a tension
T = 20 N to the free end of the string. The free end of the string
is tangent to the coffee can, so that the radial direction is
perpendicular to the force direction. What is the magnitude of the
torque exerted by the string on the coffee can?

(A) 1 N ·m
(B) 2 N ·m
(C) 5 N ·m
(D) 10 N ·m
(E) 20 N ·m



Suppose that the angular acceleration of the can is α = 2 s−2

when the string exerts a torque of 1 N ·m on the can. What would
the angular acceleration of the can be if the string exerted a torque
of 2 N ·m instead?

(A) α = 0.5 s−2

(B) α = 1 s−2

(C) α = 2 s−2

(D) α = 4 s−2

(E) α = 5 s−2

(F) α = 10 s−2



I apply a force of 5.0 N at a perpendicular distance of 5 cm
(r⊥ = 0.05 m) from this rotating wheel, and I observe some
angular acceleration α. What force would I need to apply to this
same wheel at r⊥ = 0.10 m (that’s 10 cm) to get the same angular
acceleration α?

(A) F = 1.0 N

(B) F = 2.5 N

(C) F = 5.0 N

(D) F = 10 N

(E) F = 20 N



Suppose that I use the tension T in the string to apply a given
torque τ = r⊥T to this wheel, and it experiences a given angular
acceleration α. Now I increase the rotational inertia I of the wheel
and then apply the same torque. The new angular acceleration
αnew will be

(A) larger: αnew > α

(B) the same: αnew = α

(C) smaller: αnew < α



I want to tighten a bolt to a torque of 1.0 newton-meter, but I
don’t have a torque wrench. I do have an ordinary wrench, a ruler,
and a 1.0 kg mass tied to a string. How can I apply the correct
torque to the bolt?

(A) Orient the wrench horizontally and hang the mass at a
distance 0.1 m from the axis of the bolt

(B) Orient the wrench horizontally and hang the mass at a
distance 1.0 m from the axis of the bolt



If the wrench is at 45◦ w.r.t. horizontal, will the 1.0 kg mass
suspended at a distance 0.1 m along the wrench still exert a torque
of 1.0 newton-meter on the bolt?

(A) Yes. The force of gravity has not changed, and the distance
has not changed.

(B) No. The torque is now smaller — about 0.71 newton-meter
— because the “perpendicular distance” is now smaller by a
factor of 1/

√
2.

(C) No. The torque is now larger — about 1.4 newton-meter.



τ = r⊥F = rF⊥ = rF sin θrF = |~r × ~F |

Four ways to get the magnitude of the torque

I (perpendicular component of distance) × (force)

I (distance) × (perpendicular component of force)

I (distance) (force) (sin θ between ~r and ~F )

I use magnitude of “vector product” ~r × ~F (a.k.a.
“cross product”)



To tighten a bolt, I apply a force of the same magnitude F at
different positions and angles. Which torque is largest?



To tighten a bolt, I apply a force of magnitude F at different
positions and angles. Which torque is smallest?



I want to apply to this meter stick two torques of the same
magnitude and opposite sense, so that the stick has zero rotational
acceleration. I apply one force of 5 N at a lever arm of 0.5 m. I
want to apply an opposing force at a lever arm of 0.2 m, so that
the second torque balances the first torque. How large must this
second force be?

(A) 1.0 N

(B) 2.0 N

(C) 12.5 N

(D) 25 N

we stopped here



I want to apply to this meter stick two torques of the same
magnitude and opposite sense, so that the stick has zero rotational
acceleration. I apply one force of 10 N at a lever arm of 0.5 m. I
tie a second string on the opposite end, 0.5 m from the pivot
point. The second force is applied at a 45◦ angle w.r.t. the
vertical. How large must this second force be?

(A) 5 N

(B) 7 N

(C) 10 N

(D) 14 N

(E) 20 N



If the rod doesn’t accelerate (rotationally, about the pivot), what
force does the scale read?

(A) 1.0 N

(B) 5.0 N

(C) 7.1 N

(D) 10 N

(E) 14 N

(F) 20 N



If the rod doesn’t accelerate, what force does the scale read?

(A) 1.0 N

(B) 5.0 N

(C) 7.1 N

(D) 10 N

(E) 14 N

(F) 20 N



If the rod doesn’t accelerate, what force does the scale read?

(A) 1.0 N

(B) 5.0 N

(C) 7.1 N

(D) 10 N

(E) 14 N

(F) 20 N



If the rod doesn’t accelerate, what force does the scale read?

(A) 1.0 N

(B) 5.0 N

(C) 7.1 N

(D) 10 N

(E) 14 N

(F) 20 N



If the rod doesn’t accelerate, what force does the scale read?

(A) 1.0 N

(B) 5.0 N

(C) 7.1 N

(D) 10 N

(E) 14 N

(F) 20 N



τ = r⊥F = rF⊥ = rF sin θrF = |~r × ~F |

Four ways to get the magnitude of the torque due
to a force:

I (perpendicular component of distance) × (force)

I (distance) × (perpendicular component of force)

I (distance) (force) (sin θ between ~r and ~F )

I use magnitude of “vector product” ~r × ~F (a.k.a.
“cross product”)

To get the “direction” of a torque, use the
right-hand rule.



Note right-hand rule for vector product ~τ = ~r × ~F .

Note that most screws have “right-handed” threads.

Turn “right” (clockwise) to tighten, turn “left”
(counterclockwise) to loosen.



If you look at the face of a clock, whose hands are moving
clockwise, do the rotational velocity vectors of the clock’s hands
point toward you or toward the clock?

(A) Toward me

(B) Toward the clock

(C) Neither — when I curl the fingers of my right hand toward the
clock, my thumb points to the left, in the 9 o’clock direction



Let’s use forces and torques to
analyze the big red wheel that we
first saw on Monday. The wheel
has rotational inertia I .

The string is wrapped at radius
R, with an object of mass m
dangling on the string.

For the dangling object, write

may =
∑

Fy

For the cylinder, write

Iα =
∑

τ



After some math, I get

α =
mgR

Iwheel + mR2
≈ mgR

Iwheel

(The approximation is for the limit where the object falls at a� g ,
so the string tension is T = (mg −ma) ≈ mg .)



Why did increasing the dangling
mass m increase the wheel’s
rotational acceleration α ?

Why did increasing the radius R
from which the dangling mass
was suspended increase the
wheel’s rotational acceleration?

Why did sliding the big rotating
masses farther out on the
extended “arms” decrease the
wheel’s rotational acceleration?



Let’s go back and use torque to analyze another problem that last
week we were only able to analyze using energy conservation:
a cylinder rolling (without slipping) down an inclined plane.

What 3 forces act on the cylinder? What is the rotation axis?
Draw FBD and extended FBD. What are the torque(s) about this
axis? How are α and a related? Write ~F = m~a and τ = Iα.



Iα =
∑

τ

I
(ax
R

)
= RF s

F s =

(
I

R2

)
ax

max = mg sin θ − F s

max = mg sin θ −
(

I

R2

)
ax(

m +
I

R2

)
ax = mg sin θ

ax =
mg sin θ

m + I
R2

=
g sin θ

1 +
(

I
mR2

)
Remember that the object with the larger “shape factor”
I/(mR2) rolls downhill more slowly.



Torques are important in architecture because they
allow us to determine the conditions for a structure
to stay put.

For an object (such as a structure or a part of a
structure) to stay put, it must have zero
acceleration, and it must have zero rotational
acceleration.

So the vector sum of all forces must add to zero,
and the sum of all torques (about any axis) must
also be zero (to keep ~a = 0 and α = 0).

If these conditions are met, the object is in
equilibrium: no unbalanced forces or torques.



Which column supports more of the beam’s weight?

(A) Left column supports more than half of the beam’s weight.

(B) Right column supports more than half of the beam’s weight.

(C) Same. Each column supports half of the beam’s weight.



Let’s analyze this configuration, then demonstrate using two scales.

I How do I write
∑

Fy = 0 ?

I What is a good choice of “rotation” axis here?

I How do I write
∑
τ = 0 ?

I What if I picked a different axis?



While we here, let’s revisit the “center-of-mass chalkline”
demonstration from a few weeks ago.

Now that we know about torque, we can see why the CoM always
winds up directly beneath the pivot, once we understand that the
line-of-action for gravity passes through the CoM.



A beam of mass M = 20 kg and length L = 2 m is attached to a
wall by a hinge. A sign of mass m = 10 kg hangs from the end of
the beam. The end of the beam is supported by a cable (at
θ = 30◦ angle w.r.t. horizontal beam), which is anchored to the
wall above the hinge.

What forces act on the
beam? (Draw EFBD.)

Find the cable tension T .

Find the “reaction” forces
Fx and Fy exerted by the
hinge on the beam.

What 3 equations can we
write for the beam? (Next
few slides.)

(Redraw this on the board.)



Beam mass M, length L. Sign mass m. Cable angle θ from
horizontal. Hinge exerts forces Fx , Fy on beam.

How do we write “sum of horizontal forces (on beam) = 0” ?

(A) Fx + T cos θ = 0

(B) Fx + T sin θ = 0

(C) Fx − T cos θ = 0

(D) Fx − T sin θ = 0



Beam mass M, length L. Sign mass m. Cable angle θ from
horizontal. Hinge exerts forces Fx , Fy on beam.

How do we write “sum of vertical forces (on beam) = 0” ?

(A) Fy + T cos θ + (M + m)g = 0

(B) Fy + T cos θ − (M + m)g = 0

(C) Fy + T cos θ − (M + m)g = 0

(D) Fy + T sin θ + (M + m)g = 0

(E) Fy + T cos θ − (M + m)g = 0

(F) Fy + T sin θ − (M + m)g = 0

(G) Fy − T cos θ − (M + m)g = 0

(H) Fy − T sin θ − (M + m)g = 0



Beam mass M, length L. Sign mass m. Cable angle θ from
horizontal. Hinge exerts forces Fx , Fy on beam.

How do we write “sum of torques (about hinge) = 0” ?

(A) +L
2Mg + Lmg + LT cos θ = 0

(B) +L
2Mg + Lmg + LT sin θ = 0

(C) −L
2Mg + Lmg + LT cos θ = 0

(D) −L
2Mg + Lmg + LT sin θ = 0

(E) −L
2Mg − Lmg + LT cos θ = 0

(F) −L
2Mg − Lmg + LT sin θ = 0



The 3 equations for static equilibrium in the xy plane

sum of horizontal forces = 0:

Fx − T cos θ = 0

sum of vertical forces = 0:

Fy + T sin θ − (M + m)g = 0

sum of torques (a.k.a. moments) about hinge = 0:

−L

2
Mg − Lmg + LT sin θ = 0



Here’s my solution: let’s compare with the demonstration



Let’s build & measure a simplified arch

Often the essence of physics is to reduce a complicated problem to
a similar problem that is easier to analyze.

(Does this make the function of a “roller support” more obvious?!)



(We’ll emphasize function over form here . . .)

Often the essence of physics is to reduce a complicated problem to
a similar problem that is easier to analyze. Use a cable to hold
bottom together so that we can use scale to measure tension.

Weight (mg) of each side is 20 N.

We’ll exploit mirror symmetry and
analyze just one side of arch.

What forces act (and where) on the
r.h.s. of the arch? (Draw EFBD for
the right-hand board.)



Use a cable to hold bottom of “arch” together so that we can use
scale to measure tension. Weight (mg) of each side is 20 N. We’ll
exploit mirror symmetry and analyze just one side of arch.

Right side shows EFBD for right-hand board.



How many unknown variables is it possible to determine using the
equations for static equilibrium in a plane?

(A) one

(B) two

(C) three

(D) four

(E) five



Static equilibrium lets us write down three equations for a given
object:

∑
Fx = 0,

∑
Fy = 0,

∑
Mz = 0. Let’s first sum up the

“moments” (a.k.a. torques) about the top hinge.

Which statement correctly expresses
∑

Mz = 0 (a.k.a.
∑
τ = 0)?

(Let the mass and length of each wooden board be L and m.)

(A) −mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(B) −mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(C) −mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(D) −mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0

(E) +mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(F) +mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(G) +mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(H) +mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0



Let’s start with torque (about top hinge) due to tension T .

I Usual convention: clockwise = negative, ccw = positive.

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~r to find component r⊥ that is perpendicular to
~F . The component r⊥ is called the “lever arm.”

I Magnitude of torque is |τ | = (r⊥)(F ).



Alternative method: use (r)(F⊥) instead of (r⊥)(F ).

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~F to find component F⊥ perpendicular to ~r .

I Magnitude of torque is |τ | = (r)(F⊥).



Now you try it for the normal force ~FN .

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~r to find component r⊥ that is perpendicular to
~F . The component r⊥ is called the “lever arm.”

I Magnitude of torque is |τ | = r⊥F .

Which component of ~r is
perpendicular to the normal
force ~FN ?

(A) horizontal component

(B) vertical component



Now you try it for the normal force ~FN .

I Draw vector ~r from pivot to point where force is applied.

I Draw force vector ~F , with its line-of-action passing through
the point where the force is applied.

I Decompose ~r to find component r⊥ that is perpendicular to
~F . The component r⊥ is called the “lever arm.”

I Magnitude of torque is |τ | = r⊥F .

How long is the horizontal
component of ~r (i.e. the ~r
component which is
perpendicular to ~F ) ?

(A) L cos θ

(B) L sin θ

(C) L tan θ



OK, now back to the original question: Let’s sum up the
“moments” (a.k.a. torques) about the top hinge.

Which statement correctly expresses
∑

Mz = 0 (a.k.a.
∑
τ = 0)?

(Let the mass and length of each wooden board be L and m.)

(A) −mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(B) −mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(C) −mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(D) −mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0

(E) +mg
(
L
2

)
cos θ + FNL cos θ − TL sin θ = 0

(F) +mg
(
L
2

)
cos θ + FNL cos θ + TL sin θ = 0

(G) +mg
(
L
2

)
sin θ + FNL sin θ − TL cos θ = 0

(H) +mg
(
L
2

)
sin θ + FNL sin θ + TL cos θ = 0

Next: what about
∑

Fx = 0 and
∑

Fy = 0 ?



Next: what about
∑

Fx = 0 and
∑

Fy = 0 ?



We said mg = 20 N, so we expect the string tension to be

T =
10 N

tan θ

How would this change if we suspended a weight Mg from the
hinge? (By symmetry, each side of arch carries half of this Mg .)



Another equilibrium problem!

The top end of a ladder of inertia m rests against a smooth (i.e.
slippery) wall, and the bottom end rests on the ground. The
coefficient of static friction between the ground and the ladder is
µs . What is the minimum angle between the ground and the
ladder such that the ladder does not slip?

Let’s start by drawing an EFBD for the ladder.



Why must we say the
wall is slippery?

Is the slippery wall
more like a pin or a
roller support?

What plays the role
here that string tension
played in the previous
problem?

Does the combination
of two forces at the
bottom act more like a
pin or a roller support?

Which forces would an
engineer call “reaction”
forces?



Which choice of pivot axis will give us the simplest
equation for

∑
Mz = 0 ? (We’ll get an equation

involving only two forces if we choose this axis.)

(A) Use bottom of ladder as pivot axis.

(B) Use center of ladder as pivot axis.

(C) Use top of ladder as pivot axis.



How would I write
∑

Mz = 0 about the bottom
end of the ladder? (Take length of ladder to be L.)

(A) FW L cos θ + mgL sin θ = 0

(B) FW L cos θ + mg L
2 sin θ = 0

(C) FW L cos θ −mgL sin θ = 0

(D) FW L cos θ −mg L
2 sin θ = 0

(E) FW L sin θ + mgL cos θ = 0

(F) FW L sin θ + mg L
2 cos θ = 0

(G) FW L sin θ −mgL cos θ = 0

(H) FW L sin θ −mg L
2 cos θ = 0

What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?



What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?

Let’s answer the original question:

What is the minimum angle between the ground and the ladder
such that the ladder does not slip?



Suppose we add to this picture a woman of mass M
who has climbed up a distance d along the length
of the ladder. Now how do we write the moment
equation

∑
Mz = 0 ?

(A) FW L sin θ −mg L
2 cos θ + Mg d

2 cos θ = 0

(B) FW L sin θ −mg L
2 cos θ + Mg d

2 sin θ = 0

(C) FW L sin θ −mg L
2 cos θ + Mgd cos θ = 0

(D) FW L sin θ −mg L
2 cos θ + Mgd sin θ = 0

(E) FW L sin θ −mg L
2 cos θ −Mg d

2 cos θ = 0

(F) FW L sin θ −mg L
2 cos θ −Mg d

2 sin θ = 0

(G) FW L sin θ −mg L
2 cos θ −Mgd cos θ = 0

(H) FW L sin θ −mg L
2 cos θ −Mgd sin θ = 0

What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?



What do we learn from
∑

Fx = 0 and
∑

Fy = 0 ?

For a given θ, how far up can she climb before the ladder slips?



Here’s a trickier equilibrium problem:

What forces act on the beam?

What 3 equations can we write for the beam?



A tightly stretched “high wire” has length L = 50 m. It sags by
d = 1.0 m when a tightrope walker of mass M = 51 kg stands at
the center of the wire.

What is the tension in the wire?

Is it possible to increase the tension in the wire so that there is no
sag at all (i.e. so that d = 0)?

What happens to the tension as we make the sag smaller and
smaller?



Now suppose a 51 kg sign is suspended from a cable (but not at
the center), as shown below.

How would you find the tensions T1 and T2?

Once you know T1 and T2, what are the horizontal and vertical
forces exerted by the two supports on the cable?



How many equations does the “method of joints” allow us to write
down for this truss? (Consider how many joints the truss has.)

(A) 4 (B) 8 (C) 12 (D) 15



Physics 8 — Monday, October 28, 2019

I This week, you’re reading Ch2 (statics) and Ch3 (determinate
systems: equilibrium, trusses, arches) of Onouye/Kane. Feel
free to buy one of my $10 used copies if you wish.

I After spending this week’s class time on torque, we’ll spend 4
weeks applying the ideas of forces, vectors, and torque to the
analysis of architectural structures. Fun reward for your work!




