
Physics 8 — Wednesday, November 20, 2019

I HW11 is “due” on Friday, but you can turn it in on Monday,
Nov 25, as it will probably take us an extra day to get through
the material on beams.

I HW help: (Bill) Wed 4-6:30pm DRL 3C4, (Brooke/Grace)
Thu 6-8pm DRL 2C4.

I This week, read/skim O/K Ch8 (more about beams).

I You may find my “equation sheet” to be a helpful summary of
the key results from the Onouye/Kane reading:

http://positron.hep.upenn.edu/p8/files/equations.pdf#page=12

http://positron.hep.upenn.edu/p8/files/equations.pdf#page=12


Here’s what puzzled me about this statics problem last week: You
can evaluate the moment (about A) due to the horizontal 1 kN
force in two ways — with the same result, of course:

I how we did it: −1 kN × 6.5m sin(2θ) = 4.615 kN ·m
I clever, tricker way: −1 kN × 12m sin θ = 4.615 kN ·m

We discovered a geometrical proof that sin(2θ) = 2 cos θ sin θ.



Last time we worked out V (x) and M(x) for this cantilever beam.

Sign conventions: V (x) > 0 when beam left of x is pulling up on
beam right of x . M(x) > 0 when beam is smiling.

Transverse shear V (x) is
the running sum of forces
on beam, from 0 . . . x ,
where upward = positive.

Bending moment M(x) is
the torque exerted by each
side of the beam, cut at x ,
on the other side; but
beware of sign convention.

V (x) =
d

dx
M(x)

The V diagram graphs the
slope of the M diagram.



Draw V and M for this “simply supported” beam: V (x) is running
sum (up − down) of forces on beam. M > 0 when beam smiles.



V (x) =
d

dx
M(x)

The shear (V ) diagram
equals the slope of the
moment (M) diagram.

M(x) =

∫
V (x)dx

But be careful about
the M values at the
ends — depends how
the beam is supported.
A free, hinged, or
roller-supported end
has M = 0: support
exerts no torque on
that end. Fixed end of
cantilever has M 6= 0.



Let’s try drawing load, V , and M diagrams for this simply-
supported beam. Pretend the units are meters and kilonewtons
rather than the original drawing’s feet and kilopounds (“kips”).





Shear (V) and moment (M) diagrams:

I First draw a “load diagram,” which is an EFBD that shows all
of the vertical forces acting on the beam.

I The “shear diagram” V (x) graphs the running sum of all
vertical forces (both supports and loads) acting on the beam,
from the left side up to x , where upward = positive,
downward = negative.

I To draw the “moment diagram” M(x), note that V is the
slope of M:

V (x) =
d

dx
M(x)

I The change in M from x1 to x2 is given by

M2 −M1 = (x2 − x1)V average
1→2

I If an end of a beam is unsupported (“free”), is hinge/pin
supported, or is roller supported, then M = 0 at that end.
You can only have M 6= 0 at an end if the support at that end
is capable of exerting a torque on the beam — for example,
the fixed end of a cantilever has M 6= 0.



Let’s try drawing V (x) and M(x) diagrams for a simply supported
beam with uniform distributed load, as shown.











Questions for Prof. Farley!

I How do we explain the variation of shear stress across the
cross-section of a beam — for example: where is shear stress
largest for a simply supported beam with uniform distributed
load, rectangular cross-section?

I Should we add to this course some physics of masonry
structures, e.g. a classic Roman arch?

I For design criteria of a structure (O/K ch1), what is meant by
redundancy and continuity?

I Z.E. question: how to study moments in complex shapes?

I Any others?!



Draw shear (V ) and moment (M) diagrams for this beam! Tricky!
First one needs to solve for the support (“reaction”) forces.

Note: in solving for the support forces, you replace distributed load
w with equivalent point load. But when you draw the load
diagram to find V and M, you need to keep w in its original form.



Remember that V (x) is the running sum, from LHS to x , of
vertical forces acting on the beam, with upward=positive.





Neat trick: M2 −M1 = (V average
1→2 )(x2 − x1)



Draw load, V , and M diagrams for this simply supported beam
with a partial uniform load.









Why do we care about these beam diagrams, anyway? Usually the
floor of a structure must carry a specified weight per unit area.
The beams (beams, girders, joists, etc.) must be strong enough to
support this load without failing and must be stiff enough to
support this load without excessive deflection.



Beam criteria:

I Normal stress in the extreme fibers of the beam (farthest from
neutral surface) must be smaller than the allowable bending
stress, Fb, which depends on the material (wood, steel, etc.).

I This happens where M(x) has largest magnitude.

I Shear stress (in both y (“transverse”) and x (“longitudinal”)
must be smaller than the allowable shear stress, Fv , which is
also a property of the material (wood, steel, etc.).

I This happens where V (x) has largest magnitude, and
(surprisingly) is largest near the neutral surface.

I The above two are “strength” criteria. The third one is a
“stiffness” criterion:

I The maximum deflection under load must satisfy the building
code: typically ∆ymax < L/360.

I For a uniform load, this happens farthest away from the
supports. If deflection is too large, plaster ceilings develop
cracks, floors feel uncomfortably bouncy or sloped.

I The book also notes buckling as a beam failure mode.



(In this illustration, bottom is in tension, top is in compression, as
in a “simply supported” beam.)



A big topic from this week’s reading was to see how an initially
horizontal beam responds to the bending moment M(x) by
deforming into a curved shape.

(In this illustration, top is in tension, as in a cantilever.)



Key idea: bending moment M ∝ 1
R , where R is the radius of

curvature of the beam. For constant M, vertical lines converge
toward common center of curvature.

strain =
∆L

L0
=

y

R

where y = 0 is the
neutral surface.

So in this case y > 0 is
in tension and y < 0 is
in compression.



If you think of wood fibers running along the beam’s axis, then the
fibers above the neutral surface (y > 0) are stretched in proportion
to y , and the fibers below the neutral surface (y < 0) are
compressed in proportion to |y |.

strain =
∆L

L
=

y

R



Now remember that ∆L
L is called (axial) strain, and force per unit

area is called stress. For an elastic material, strain (e) ∝ stress (f ).

∆L

L
=

1

E
× Force

Area
=

1

E
× f e =

1

E
× f



In the elastic region, strain (e = ∆L/L) is proportional to stress

(f = F/A). f = Ee . The slope E is Young’s modulus.



Plugging in f = Ee to the bending-beam diagram:

y

R
=

∆L

L
= e =

f

E

we find the force-per-unit area (stress) exerted by the fibers is

f =
Ey

R



The force-per-unit area (stress) exerted by the fibers is

f =
Ey

R

while the torque (bending moment dM, pivot about N.A.) exerted
by each tiny fiber of area dA is proportional to its lever arm y

dM = y dF = y f dA = y

(
Ey

R

)
dA =

E

R
y2 dA



So the bending moment M exerted by a curved beam is

M =
E

R

∫
y2 dA =

EI

R

where R is the curved beam’s radius of curvature and I =
∫
y2 dA

is the “second moment of area” a.k.a. “area moment of inertia.”



M =
E

R

∫
y2dA =

EI

R

Meanwhile, the vertical deflection ∆ of a point along the beam is
related to its curvature by (in limit where ∆� R)

1

R
≈ d2∆

dx2

so you can integrate the M(x) curve twice to get deflection

d2∆

dx2
=

M

EI
⇒ ∆(x) =

1

EI

∫
dx

∫
M(x) dx



Calculus digression (not important — but you may be curious):

You may have seen in calculus that the “curvature” (which means
1/R, where R is the radius of curvature) of a function y = f (x) is

1

R
=

y ′′

(1 + (y ′)2)3/2

We are working in the limit y ′ � 1, so

1

R
≈ y ′′

That’s how we arrived at

1

R
≈ d2∆

dx2



M =
E

R

∫
y2dA =

EI

R

Meanwhile, the vertical deflection ∆ of a point along the beam is
related to its curvature by (in limit where ∆� R)

1

R
≈ d2∆

dx2

so you can integrate the M(x) curve twice to get deflection

d2∆

dx2
=

M

EI
⇒ ∆(x) =

1

EI

∫
dx

∫
M(x) dx



This Onouye/Kane figure
writes “y” here for
deflection, but I wrote
“∆” for deflection on the
preceding pages (and they
usually do, too), because
we were already using y
for “distance above the
neutral surface.”

So you integrate M(x)/EI
twice w.r.t. x to get the
deflection ∆(x).

The bending moment
M(x) = EI d2∆/dx2,
where E is Young’s
modulus and I is second
moment of area.



The most common deflection results can be found in tables.



FYI, here’s where that crazy (5wL4)/(384EI ) comes from!

(continued on next page)



Here’s where that crazy (5wL4)/(384EI ) comes from!

The 2 integration constants can be tricky. Simply supported:
∆(0) = ∆(L) = 0. (For cantilever, ∆(0) = ∆′(0) = 0 instead.)



Maximum deflection is one of several beam-design criteria. You
can see now how it relates to the load and M(x) diagrams: ∆max

comes from integrating M(x)/(EI ) twice w.r.t. x to get ∆(x).

For point load P at the end of a cantilever (for example), you get

∆max =
PL3

3EI

For uniform load w on simply-supported beam, you get

∆max =
5wL4

384EI

You just look these results up, or use a computer to calculate them.

Deflection is proportional to load, and inversely proportional to
Young’s modulus and to the second moment of area.

I More load → more deflection

I Stiffer material → less deflection

I Cross-section with larger I =
∫
y2 dA → less deflection



Another beam-design criterion is maximum bending stress: the
fibers farthest from the neutral surface experience the largest
tension or compression, hence largest bending stress.

When we section the beam at x , bending moment M(x) is

M =
EI

R

which we can solve for the radius of curvature R = EI/M. Then
the stress a distance y above the neutral surface is

f = Ee = E
y

R
=

E y

(EI/M)
=

M y

I



The bending stress a distance y above the neutral surface is

f =
M y

I

The largest bending stress happens in the fibers farthest above or
below the neutral surface. Call this largest distance ymax ≡ c .

fmax =
M c

I
=

M

(I/c)
=

M

S

The ratio S = I/c is called “section modulus.”



Bending stress in fibers farthest from neutral surface:

fmax =
M

(I/c)
=

M

S

So you sketch your load, V , and M diagrams, and you find Mmax,
i.e. the largest magnitude of M(x).

Then, the material you are using for beams (wood, steel, etc.) has
a maximum allowable bending stress, Fb.

So then you look in your table of beam cross-sections and choose

S ≥ Srequired =
Mmax

Fb



Beam criteria:

I Normal stress in the extreme fibers of the beam (farthest from
neutral surface) must be smaller than the allowable bending
stress, Fb, which depends on the material (wood, steel, etc.).

I This happens where M(x) has largest magnitude.

I Shear stress (in both y (“transverse”) and x (“longitudinal”)
must be smaller than the allowable shear stress, Fv , which is
also a property of the material (wood, steel, etc.).

I This happens where V (x) has largest magnitude, and
(surprisingly) is largest near the neutral surface.

I The above two are “strength” criteria. The third one is a
“stiffness” criterion:

I The maximum deflection under load must satisfy the building
code: typically ∆ymax < L/360.

I For a uniform load, this happens farthest away from the
supports. If deflection is too large, plaster ceilings develop
cracks, floors feel uncomfortably bouncy or sloped.

I The book also notes longitudinal buckling as a failure mode.



Maximum deflection is one of several beam-design criteria. ∆max

comes from integrating M(x)/(EI ) twice w.r.t. x to get ∆(x).

For uniform load w on simply-supported beam, you get

∆max =
5wL4

384EI

You just look these results up, or use a computer to calculate
them. But I had great fun calculating the 5/384 myself!

Deflection is proportional to load, and inversely proportional to
Young’s modulus and to the second moment of area.

I More load → more deflection

I Stiffer material → less deflection

I Cross-section with larger I =
∫
y2 dA → less deflection

Notice that putting a column in the middle of a long, uniformly
loaded beam reduces ∆max by a factor of 24 = 16. Alternatively,
if you want to span a large, open space without intermediate
columns or bearing walls, you need beams with large I .



Bending beam into circular arc of radius R gives e =
∆L

L0
=

y

R
,

strain e vs. distance y above the neutral surface.

Hooke’s Law f = Ee

gives stress f =
E y

R
Torque exerted by
fibers of beam is

M =

∫
y (f dA) =

y
E y

R
dA =

E

R
y2 dA

M =
EI

R

Eliminate R ⇒

f =
M y

I
=

M

I/y



The bending stress a distance y above the neutral surface is

f =
M y

I

The largest bending stress happens in the fibers farthest above or
below the neutral surface. Call this largest distance ymax ≡ c .

fmax =
Mmax c

I
=

Mmax

(I/c)
=

Mmax

S

The ratio S = I/c is called “section modulus.” The load diagram
gives you Mmax. Each material (wood, steel, etc.) has allowed
bending stress fmax. Then Smin tells you how big a beam you need.



Example (using metric units!): A cantilever beam has a span of
3.0 m with a single concentrated load of 100 kg at its unsupported
end. If the beam is made of timber having allowable bending stress
Fb = 1.1× 107 N/m2 (was 1600 psi in US units), what minimum
section modulus is required?

What is the smallest “2×” dimensional lumber (width = 1.5 inch
= 0.038 m) whose cross-section satisfies this strength criterion?

Would this beam also satisfy a ∆max < L/240 (maximum
deflection) stiffness criterion? If not, what standard “2×”
cross-section is needed instead?

∆max = PL3/(3EI ) for a cantilever with concentrated load at end.
Use Young’s modulus E = 1.1× 1010 N/m2 for southern pine.





Smin =
|Mmax|
fallowed

=
PL

Fb
=

(980N)(3m)

1.1× 107 N/m2
= 26.7× 10−5 m3

∆allowed =
L

240
=

3.0m

240
= 0.0125 m

∆max =
PL3

3EI
⇒ Imin =

PL3

3E∆allowed
= 64.2× 10−6 m4



I worked out b, h, I , and S = I/c values in metric units for
standard “2×” dimensional lumber.

b b h h I = bh3/12 S = bh2/6
2× 4 1.5 in .038m 3.5 in .089m 2.23× 10−6 m4 5.02× 10−5 m3

2× 6 1.5 in .038m 5.5 in .140m 8.66× 10−6 m4 12.4× 10−5 m3

2× 8 1.5 in .038m 7.5 in .191m 21.9× 10−6 m4 23.0× 10−5 m3

2× 10 1.5 in .038m 9.5 in .241m 44.6× 10−6 m4 37.0× 10−5 m3

2× 12 1.5 in .038m 11.5 in .292m 79.1× 10−6 m4 54.2× 10−5 m3

The numbers are nicer if you use centimeters instead of meters,
but then you have the added hassle of remembering to convert
back to meters in calculations.

b b h h I = bh3/12 S = bh2/6
2× 4 1.5 in 3.8 cm 3.5 in 8.9 cm 223 cm4 50.2 cm3

2× 6 1.5 in 3.8 cm 5.5 in 14.0 cm 866 cm4 124 cm3

2× 8 1.5 in 3.8 cm 7.5 in 19.1 cm 2195 cm4 230 cm3

2× 10 1.5 in 3.8 cm 9.5 in 24.1 cm 4461 cm4 370 cm3

2× 12 1.5 in 3.8 cm 11.5 in 29.2 cm 7913 cm4 542 cm3



Minor variation on same problem: A cantilever beam has a span of
3.0 m with a uniform distributed load of 33.3 kg/m along its entire
length. If we use timber with allowable bending stress
Fb = 1.1× 107 N/m2, what minimum section modulus is required?

What is the smallest “2×” dimensional lumber (width = 1.5 inch
= 0.038 m) whose cross-section satisfies this strength criterion?

Would this beam also satisfy a ∆max < L/240 (maximum
deflection) stiffness criterion? If not, what standard “2×”
cross-section is needed instead?

∆max = wL4/(8EI ) for a cantilever with uniform load. Use
Young’s modulus E = 1.1× 1010 N/m2 for southern pine.





Smin =
|Mmax|
fallowed

=
wL2/2

Fb
=

(326N/m)(3m)2/2

1.1× 107 N/m2
= 13.3× 10−5 m3

∆allowed =
L

240
=

3.0m

240
= 0.0125 m

∆max =
wL4

8EI
⇒ Imin =

wL4

8E∆allowed
= 24.0× 10−6 m4



(Here’s a homework problem from ARCH 435.)

Actually, Home Depot’s 2× 10 really is 9.5 inches deep, not 9.25
inches, and 2× 12 really is 11.5 inches deep.



A timber floor system uses joists made of “2× 10” dimensional
lumber. Each joist spans a length of 4.27 m (simply supported).
The floor carries a load of 2400 N/m2. At what spacing should the
joists be placed, in order not to exceed allowable bending stress
Fb = 10000 kN/m2 (1.0× 107 N/m2)?

(We should get an answer around 24 inches = 0.61 meters.)









If we have time left, let’s solve this truss problem together. It’s
actually pretty quick, using method of sections. First solve for
vertical support force at A, then analyze left side of section.





Physics 8 — Wednesday, November 20, 2019

I HW11 is “due” on Friday, but you can turn it in on Monday,
Nov 25, as it will probably take us an extra day to get through
the material on beams.

I HW help: (Bill) Wed 4-6:30pm DRL 3C4, (Brooke/Grace)
Thu 6-8pm DRL 2C4.

I This week, read/skim O/K Ch8 (more about beams).

I You may find my “equation sheet” to be a helpful summary of
the key results from the Onouye/Kane reading:

http://positron.hep.upenn.edu/p8/files/equations.pdf#page=12
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