
Physics 8 — Wednesday, November 27, 2019
I I’ll put take-home practice exam (due 12/6 or 12/9) online

this evening. I put 4 years’ old exams online at
http://positron.hep.upenn.edu/p8/files/oldexams/

I Today: a tutorial of the “Processing.py” computer
programming language — whose purpose is to learn how to
code within the context of the visual arts. It makes coding fun
and visual. Processing.py is a Python-based version of the
(Java-based) Processing programming environment.

I Extra-credit options (if you’re interested):
I Learn to use Mathematica (ask me how), which is a system for

doing mathematics by computer. (It is the brains behind
Wolfram Alpha.) Penn’s site license makes Mathematica
free-of-charge for SAS and Wharton students.

I Use “Processing.py” (or ordinary “Processing”) to write a
program to draw or animate something that interests you.
(Not necessarily physics-related.)

I Knowing “how to code” is empowering & enlightening. So I
offer you an excuse to give it a try, for extra credit, if you wish.

I Today’s examples online at
http://positron.hep.upenn.edu/p8/files/pyprocessing/

http://positron.hep.upenn.edu/p8/files/oldexams/
http://positron.hep.upenn.edu/p8/files/pyprocessing/

The software is free & open-source. Runs on Mac, Windows,
Linux. The “getting started” book will set you back about $15.

or start with the in-browser video tutorial (no download needed):
http://hello.processing.org (Processing, not Processing.py)

http://hello.processing.org

“hello world” program
Let’s draw a circle and a line.

More commonly, a Processing program has a function called
setup() that runs once when the program starts, and another
function called draw() that runs once per frame.

def setup():

this function runs once when the program starts up

size(900, 450) # sets width & height of window (in pixels)

def draw():

this function runs once per frame of the animation

line(0, frameCount, width, height-frameCount)

Let’s make it do something repetitive

def setup():

this function runs once when the program starts up

size(900, 450) # sets width & height of window (in pixels)

def draw():

this function runs once per frame of the animation

dy = 0.5*height + 0.5*height*sin(0.01*frameCount)

line(0, dy, width, height-dy)

How about repeating something more exciting?

def setup():

this function runs once when the program starts up

size(900, 450) # sets width & height of window (in pixels)

def draw():

this function runs once per frame of the animation

dy = 0.5*height + 0.5*height*sin(0.01*frameCount)

line(0, dy, width, height-dy)

t = 0.02*frameCount

x = 0.5*width + 200*cos(t)

y = 0.5*height + 200*sin(t)

ellipse(x, y, 20, 20)

Did you ever have a Spirograph toy when you were a kid?

def setup():

size(900, 450)

def draw():

t = 0.02*frameCount

x = 0.5*width + 200*cos(t) + 30*cos(11*t)

y = 0.5*height + 200*sin(t) - 30*sin(11*t)

ellipse(x, y, 5, 5)

How about something that starts to resemble physics? A really,
really low-tech animation of an planet orbiting a star.

def setup():

size(900, 450)

def draw():

t = 0.01*frameCount

xsun = 0.5*width

ysun = 0.5*height

ellipse(xsun, ysun, 20, 20)

rplanet = 200

xplanet = xsun + rplanet*cos(t)

yplanet = ysun + rplanet*sin(t)

ellipse(xplanet, yplanet, 10, 10)

Let’s add a moon in orbit around the planet.

def draw():

t = 0.01*frameCount

xsun = 0.5*width

ysun = 0.5*height

clear screen before each new frame

background(128)

draw sun

ellipse(xsun, ysun, 20, 20)

rplanet = 200

xplanet = xsun + rplanet*cos(t)

yplanet = ysun + rplanet*sin(t)

draw planet

ellipse(xplanet, yplanet, 10, 10)

rmoon = 30

xmoon = xplanet + rmoon*cos(t*365/27.3)

ymoon = yplanet + rmoon*sin(t*365/27.3)

draw moon

ellipse(xmoon, ymoon, 5, 5)

How about adding an inner planet?

def draw():

... other stuff suppressed ...

draw moon

ellipse(xmoon, ymoon, 5, 5)

add second planet

year_mercury_days = 115.88 # from Wikipedia

T_ratio = year_mercury_days/365.25

R_ratio = T_ratio**(2.0/3)

xplanet = xsun + R_ratio*rplanet*cos(t/T_ratio)

yplanet = ysun + R_ratio*rplanet*sin(t/T_ratio)

ellipse(xplanet, yplanet, 7, 7)

Animate a pendulum (skip?)

def setup():

size(900, 450)

def draw():

t = 0.01*frameCount

g = 9.8

L = 2.0

degree = PI/180

amplitude = 20*degree

omega = sqrt(g/L)

theta = amplitude * sin(omega*t)

xbob = L * sin(theta)

ybob = L * cos(theta)

convert coordinates into pixel coordinates

... continued on next slide ...

def draw():

... continued from previous slide ...

convert coordinates into pixel coordinates

xpixel_pivot = 0.5*width

ypixel_pivot = 0.1*height

scale = 100.0 # pixels per meter

xpixel_bob = xpixel_pivot + scale*xbob

ypixel_bob = ypixel_pivot + scale*ybob

clear the screen for each new frame of animation

background(128)

draw the string

line(xpixel_pivot, ypixel_pivot, xpixel_bob, ypixel_bob)

draw the bob

ellipse(xpixel_bob, ypixel_bob, 20, 20)

Animate a mass bobbing on a spring

def draw():

t = 0.01*frameCount

omega = 1.0

amplitude = 0.5

Lequilibrium = 2.0

xbob = 0

ybob = Lequilibrium + amplitude * cos(omega*t)

xpixel_anchor = 0.5*width

ypixel_anchor = 0.01*height

scale = 100.0

xpixel_bob = xpixel_anchor + scale*xbob

ypixel_bob = ypixel_anchor + scale*ybob

// draw the bob

rbob = 15

ellipse(xpixel_bob, ypixel_bob, 2*rbob, 2*rbob)

Clear screen between frames; draw the spring

def draw():

... other stuff suppressed ...

clear the screen for each new frame

background(200)

draw the bob

rbob = 15

ellipse(xpixel_bob, ypixel_bob, 2*rbob, 2*rbob)

draw the spring as a series of zig-zag lines

nzigzag = 20

for i in range(nzigzag):

spring_top = ypixel_anchor

spring_bottom = ypixel_bob - rbob

dy = (spring_bottom-spring_top)/nzigzag

xzig = xpixel_anchor - 20

yzig = ypixel_anchor + i*dy

xzag = xpixel_anchor + 20

ymid = yzig + 0.5*dy

yzag = yzig + dy

line(xzig, yzig, xzag, ymid)

line(xzag, ymid, xzig, yzag)

Let’s add some “physics” to the spring.

we will update position & velocity frame-by-frame,

so we store them in these "global" variables

y = 1.49 # need to change this to make anything happen!

vy = 0.0

def draw():

dt = 0.01

k = 20.0

m = 1.0

g = 9.8

Lrelaxed = 1.0

y = y + vy*dt

Fy = m*g - k*(y-Lrelaxed)

vy = vy + (Fy/m)*dt

xbob = 0

ybob = Lrelaxed + y

... the rest is unchanged ...

https://en.wikipedia.org/wiki/Leapfrog_integration

https://en.wikipedia.org/wiki/Leapfrog_integration

A “breakout” game coded by a Fall 2017 (and Fall 2018) student.

This was done in Java Processing. Let’s try to imitate it in Python!

def setup():

size(900, 450)

global b

Make rectangle location be its center position

rectMode(CENTER)

Instantiate the state of the game board

b = Breakout()

def draw():

global b

b.update()

b.draw()

class Breakout:

"Constructor" for new Breakout object

def __init__(self):

... continued on next slide ...

class Breakout:

def __init__(self):

various screen boundaries

self.ytop = 0.0

self.ybot = height

self.xleft = 0.0

self.xright = width

ball’s size, position, velocity

self.rball = 7.0

self.xball = 0.5*width

self.yball = 0.5*height

self.speed = 3.0

self.vxball = self.speed/sqrt(2)

self.vyball = self.speed/sqrt(2)

def update(self):

... see next slide ...

def draw(self):

... see next slide ...

class Breakout:

def __init__(self):

... see previous slide ...

def update(self):

dt = 1.0

use ball velocity to update ball position

self.xball += self.vxball*dt

self.yball += self.vyball*dt

update ball velocity if it hits the game boundary

if ((self.xball >= self.xright) or

(self.xball <= self.xleft)):

self.vxball *= -1.0

if ((self.yball >= self.ybot) or

(self.yball <= self.ytop)):

self.vyball *= -1.0

def draw(self):

... see next slide ...

class Breakout:

def __init__(self):

... see earlier slide ...

def update(self):

... see previous slide ...

def draw(self):

clear the screen

background(200)

draw the ball (black)

fill(color(0, 0, 0))

ellipse(self.xball, self.yball,

2*self.rball, 2*self.rball)

... insert this into Breakout :: __init__

paddle’s location and x,y thickness

self.xpaddle = 0.5*width

self.ypaddle = 0.95*height

self.dxpaddle = 0.1*width

self.dypaddle = 0.02*height

... insert this into Breakout :: update

make the paddle follow the horizontal mouse position

self.xpaddle = mouseX

check for ball bouncing off of the paddle

if (abs(self.yball - self.ypaddle) < self.dypaddle/2 and

abs(self.xball - self.xpaddle) < self.dxpaddle/2 and

self.vyball > 0):

self.vyball *= -1.0

... insert this into Breakout :: draw

draw the paddle (white)

fill(color(255, 255, 255))

rect(self.xpaddle, self.ypaddle,

self.dxpaddle, self.dypaddle)

class Brick:

def __init__(self, x, y, dx, dy):

self.x = x

self.y = y

self.dx = dx

self.dy = dy

self.rcolor = random(0, 255)

self.gcolor = random(0, 255)

self.bcolor = random(0, 255)

def checkCollision(self, x, y):

if abs(x-self.x) > 0.5*self.dx:

return False

if abs(y-self.y) > 0.5*self.dy:

return False

return True

def draw(self):

fill(color(self.rcolor, self.gcolor, self.bcolor))

rect(self.x, self.y, self.dx, self.dy)

... insert into Breakout :: __init__

make list of bricks

self.bricks = []

ncol = 10

for irow in range(5):

for jcol in range(ncol):

dxbrick = 1.0*width/ncol

dybrick = 0.05*height

xbrick = (jcol+0.5)*dxbrick

if (irow % 2) != 0:

xbrick += 0.5*dxbrick

ybrick = 0.1*height + (irow+0.5)*dybrick

self.bricks.append(Brick(x=xbrick, y=ybrick,

dx=dxbrick, dy=dybrick))

... insert into Breakout :: draw

draw the bricks

for b in self.bricks:

b.draw()

... insert into Breakout :: update

check for collisions with bricks

for i in range(len(self.bricks)):

b = self.bricks[i]

if b.checkCollision(self.xball, self.yball):

collision! reverse the ball’s velocity

self.vxball *= -1.0

self.vyball *= -1.0

delete the struck brick from the list!

self.bricks.pop(i)

don’t check any more bricks this frame,

as we modified the list of bricks

break

... in Breakout :: __init__

self.previousMouseX = mouseX

...

... in Breakout :: update

estimate the horizontal velocity of the paddle

vxpaddle = (mouseX - self.previousMouseX)/dt

self.previousMouseX = mouseX

...

... upon detecting collision with paddle

allow paddle velocity to affect horizontal

ball velocity, since otherwise we can get

stuck with bricks that cannot be reached

self.vxball += vxpaddle

don’t let ball velocity become too horizontal

minvh = 0.5*self.speed

if abs(self.vyball) < minvh:

self.vyball = -minvh

but keep the overall ball speed constant

temp_speed = sqrt(self.vxball**2 + self.vyball**2)

self.vxball *= self.speed/temp_speed

self.vyball *= self.speed/temp_speed

I The easiest way to get started with the original Java-based
version of Processing is to start with this easy online video
tutorial that will get you coding in Processing in about an
hour! No download or software install is needed for this
tutorial — you type your first programs directly into your web
browser as you follow along with the video.
http://hello.processing.org

I For the Python version, work through the first few tutorials at
http://py.processing.org/tutorials

I If you’re in Addams Hall often, you might ask Orkan Telhan if
he has ideas — I believe he still teaches Processing in
FNAR 264 / VLST 264, “Art, Design, and Digital Culture.”

I There are also tons of examples at http://processing.org
that you could use as starting points or for inspiration, though
again these examples use the Java version of Processing.

I In Fall 2017, ten students sent me Processing sketches! I
include a few screen captures on the next few slides.

http://hello.processing.org
http://py.processing.org/tutorials
http://processing.org

An example from a Fall 2013 student: drawing a fractal.

Another Fall 2013 student: ball bouncing between two springs

An example from a Fall 2015 student: an animated panda.

An example from a Fall 2015 student: a rotating fractal.

An example from a Fall 2015 student: a minion.

Fall 2015 student: bird moves where you move the mouse pointer.

Physics 8 — Wednesday, November 27, 2019
I I’ll put take-home practice exam (due 12/6 or 12/9) online this

evening. I put 4 years’ old exams online at
http://positron.hep.upenn.edu/p8/files/oldexams/

I Extra-credit options (if you’re interested):
I Learn to use Mathematica (ask me how), which is a system for

doing mathematics by computer. (It is the brains behind
Wolfram Alpha.) Penn’s site license makes Mathematica
free-of-charge for SAS and Wharton students.

I Use “Processing.py” (or ordinary “Processing”) to write a
program to draw or animate whatever interests you. (Not
necessarily physics-related.)

I Read O/K ch9 on columns & summarize what you learned.
I Read Mazur ch13 on gravity & summarize what you learned.
I Go through Prof. Phil Nelson’s book on using Python for data

modeling. Several Huntsman students seem keen to do this.
I Respond to podcast about near-fatal flaw in Citigroup Center,

601 Lexington Ave, NYC
http://positron.hep.upenn.edu/p8/files/citicorp_tower.mp3

I Pursue your own XC idea: phys/math/coding/structures/etc
I Today’s examples online at
http://positron.hep.upenn.edu/p8/2018/files/pyprocessing/

http://positron.hep.upenn.edu/p8/files/oldexams/
http://positron.hep.upenn.edu/p8/files/citicorp_tower.mp3
http://positron.hep.upenn.edu/p8/2018/files/pyprocessing/

