
Physics 8 — Monday, December 2, 2019

I Final exam (25%) is Thu, Dec 12, noon–2pm, DRL A1.

I I’ll try to book a room for a review session on Wed, Dec 11,
preferably mid-afternoon.

I Pick up take-home practice exam (10%) in back of room.

I If you turn it in on Friday (in class, or in my office, DRL
1W15, by 5pm), I’ll grade it and return it to you (email PDF)
on Monday evening, Dec 9.

I If you turn it in next Monday (in class, or in my office, by
5pm), I’ll return it to you on Wednesday, Dec 11. If I don’t
have your exam by 5pm on Monday, Dec 9, your score is zero,
no exceptions, so that I can return graded exams promptly.

I 4 previous years’ exams & practice exams are at
http://positron.hep.upenn.edu/p8/files/oldexams

I Periodic motion (oscillation, vibration) is our last topic this
term. Alas, this year’s exam schedule doesn’t allow us to
include it in the homework or the exam.

http://positron.hep.upenn.edu/p8/files/oldexams


Vibrations/oscillations

I Are ubiquitous (look around — or listen — for examples!)
because anything in stable equilibrium can oscillate about the
equilibrium point. (Illustration.)

Picture a ball at the bottom of a round container. Is it in stable
equilibrium at the bottom? What happens if I slide it over a bit
and then let go of it?

I The restoring force pushes it back toward the equilibrium
position. Once it reaches the equilibrium position, the net
force is zero, but by that point the ball is in motion, so it
continues past the equilibrium point until the restoring force
eventually reverses its direction. It keeps moving back and
forth until eventually the energy is dissipated by friction, and
the ball comes to rest in the equilibrium position.

I Contrast with neutral or unstable equilibrium: no restoring
force in these cases.



Oscillations / vibrations

I The restoring force that keeps an object stable is the same
restoring force that causes the object to vibrate when
displaced.

I The simplest form for a restoring force is Hooke’s law:

Fx = −k (x − x0)

I A linear restoring force is the most common case, for small
displacements. We study it because it is ubiquitous and
because it is relatively easy to analyze.

I If there is a linear restoring force (i.e. if the force is
proportional to the displacement) and negligible friction, then
the math works out cleanly with sines and cosines, and we call
the motion Simple Harmonic Motion.



skip math — here in case you’re curious
Hooke’s law for a block on a horizontal spring is

Fx = −k (x − x0)

(Note: for vertical orientation, the equilibrium position is offset
downward by mg/k , after which the math is identical.)
Newton’s 2nd law for the block of mass m then reads

max = −k (x − x0)

To simplify the math, let x0 = 0 for the moment. Then

max = −kx

m
d2x

dt2
= −kx

A function whose second derivative is proportional to the original
function (with a negative coefficient) is a sine or a cosine.

x(t) = A sin(ωt + φi )



Plugging [skip math — it’s here for your curiosity]

x(t) = A sin(ωt + φi )

into
max = −kx

works, using “angular frequency” ω (radians/second)

ω =

√
k

m

Or (more familiar) “frequency” (cycles/second, or Hz)

f =
ω

2π
=

1

2π

√
k

m

check:

vx(t) =
dx

dt
= ωA cos(ωt + φi )

max(t) = m
dvx
dt

= −mω2A sin(ωt + φi ) = −kA sin(ωt + φi ) = −kx



For a mass oscillating on a spring at its “natural frequency,” i.e.
the frequency at which it oscillates if I pluck it or whack it and
then leave it alone

ω0 = 2πf0 =

√
k

m

and the motion is sinusoidal in time:

x(t) = xeq + A sin(ω0t + φi )

I xeq is equilibrium position (usually we choose xeq = 0)

I A is called the amplitude

I The “initial phase” φi tells you what’s happening at t = 0

I φi = 0 or π means displacement w.r.t. xeq is zero at t = 0

I φi = ±π/2 means displacement is max(min)imum at t = 0

I notice sin(ωt ± π/2) = ± cos(ωt)



x(t) = xeq + A sin(ω0t + φi )

Writing x(t) this way is usually more complicated than necessary.
The most common cases for φi are:

I φi = 0: at t = 0, (x − xeq) = 0 and vx > 0 (maximum)

x(t) = xeq + A sin(ω0t)

I φi = π/2: at t = 0, (x − xeq) > 0 (maximum) and vx = 0

x(t) = xeq + A cos(ω0t)

I φi = π: at t = 0, (x − xeq) = 0 and vx < 0 (minimum)

x(t) = xeq − A sin(ω0t)

I φi = −π/2: at t = 0, (x − xeq) < 0 (minimum) and vx = 0

x(t) = xeq − A cos(ω0t)



As another simplification, usually we define the x axis so that
xeq = 0. Then for the two most common cases:

I at t = 0, x = 0 and vx > 0

x(t) = A sin(ω0t)

vx(t) = ω0A cos(ω0t)

I at t = 0, x > 0 and vx = 0

x(t) = A cos(ω0t)

vx(t) = −ω0A sin(ω0t)

Let’s try this with graphs instead of equations. The next few
graphs will assume that we choose xeq = 0.



Oscillation: vinitial = 0, xinitial > 0: looks like a cosine



now reduce amplitude by half from previous slide



Oscillation: vinitial > 0, xinitial = 0: looks like a sine



Let’s try some examples using a coordinate system that looks like
this. So xeq = 0 and the x axis points upward.



A

C

B

D



What’s the amplitude of this motion? Period? Frequency?



What’s the amplitude of this motion?



What’s the amplitude of this motion?



What’s the amplitude of this motion? What is xeq?



Amplitude? xeq? Period? Frequency? Angular frequency?



I Worth remembering: natural frequency for a mass on a spring

f =
1

2π

√
k

m

I double k → multiply f by
√

2

I double m → divide f by
√

2

I For a wide range of equilibrium situations in which the
restoring force is provided by some form of elasticity,
I more stiffness → higher f
I more mass → lower f

I See same
√

stiffness
inertia trend in beams, skyscrapers, etc.

I But pendulum is an exception, because restoring force ∝ m.
We’ll see in a moment.

I Another surprising result: frequency of oscillation is
independent of amplitude

I Let’s use a much stiffer spring and a much larger mass to
illustrate this last result! How can we measure k?



Caution: for this situation, if you want to graph the length of the
spring vs. time, the “length” coordinate increases in the
downward direction, and “` = 0” is at the ceiling.



We wrote x(t) in terms of ω = “natural angular frequency:”

x = A sin(ωt + φi )

but we could have equivalently used f = “natural frequency:”

x = A sin(2πf t + φi )

I f = frequency, measured in cycles/sec, or Hz (hertz)

I ω = f
2π is angular frequency, measured in radians/sec, or s−1

I The frequency f = 2πω is much more intuitive than ω

I Using ω keeps the equations cleaner — can be helpful for
derivations, etc., so that you don’t have to keep writing 2π



“angular velocity” ω is our old friend from studying circular motion:



“frequency” f = ω
2π is more familiar from music, etc.



I A above middle C: 440 Hz

I Middle C: 261.63 Hz

I 440× (12)
3
4 = 261.63

I Octave = factor of 2 in
frequency f

I Half step = factor of 12
√

2
in frequency

I Whole step = factor of
6
√

2 in frequency

I Major scale (white keys,
starting from C) =
(root) W W H W W W H

I Minor scale (white keys,
starting from A) =
(root) W H W W H W W



If the amplitude of simple harmonic motion doubles, what happens
to the frequency (i.e. the natural frequency) of the system?

(A) The frequency is 1/2 as large.

(B) The frequency is 1/
√

2 as large.

(C) The frequency is unchanged.

(D) The frequency is
√

2 times as large.

(E) The frequency is 2 times as large.



If the amplitude of simple harmonic motion doubles, what happens
to the energy of the system?

(A) The energy is unchanged.

(B) The energy is
√

2 times as large.

(C) The energy is 2 times as large.

(D) The energy is 4 times as large.

One way to see that (D) is correct is to write

x = A sin(ωt) vx = ωA cos(ωt)

and then write out the energy

1

2
mv2 +

1

2
kx2

and see that energy is proportional to A2.
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