
Physics 8 — Wednesday, December 4, 2019

I Practice exam: If you turn it in Monday (in class, or in my
office, by 5pm), I’ll return it to you on Wed, Dec 11. If I don’t
have your exam by 5pm on Monday, Dec 9, your score is zero,
no exceptions, so that I can return graded exams promptly.

I 4 previous years’ exams & practice exams are at
http://positron.hep.upenn.edu/p8/files/oldexams

I Extra credit options (until Thu, Dec 19):
I O/K ch9 (columns)
I Citigroup Center “structural integrity” podcast
I Mazur ch13 (gravity), ch14 (Einstein relativity)
I Code something in Processing or Py.Processing
I Go through tutorials to learn Wolfram Mathematica
I Go through Prof. Nelson’s python data modeling book
I You can suggest something else!

http://positron.hep.upenn.edu/p8/files/oldexams


I Worth remembering: natural frequency for a mass on a spring

f =
1

2π

√
k

m

I double k → multiply f by
√

2
I double m → divide f by

√
2

I For a wide range of equilibrium situations in which the
restoring force is provided by some form of elasticity,
I more stiffness → higher f
I more mass → lower f

I See same
√

stiffness
inertia trend in beams, skyscrapers, etc.

I But pendulum is an exception, because restoring force ∝ m.
We’ll see in a moment.

I Another surprising result: frequency of oscillation is
independent of amplitude

I Unfortunately, with A6 booked for back-to-back classes, I
didn’t have occasion to figure out why Monday’s measured
period for me-on-spring was 15% larger than our prediction.

I Let’s make sure we understand how we got the prediction.



(From 2017 practice exam): Your physics teacher Bill gets the
crazy idea that he himself will be the “mass” bobbing up and down
on the end of a stiff spring that is attached to the ceiling of DRL
room A2. Bill first hangs the spring from the ceiling and measures
its relaxed length to be 0.85 meters. Then he climbs the ladder,
gradually applies his full weight to the lower end of the spring (by
sitting on a little attached bar), and measures the spring’s new
equilibrium length (the length of the spring when Bill is in static
equilibrium) to be 1.55 meters.

[a] If Bill’s mass is 70 kg, what is the spring constant k of the
spring?

(A) (70)/(1.55− 0.85) = 100N/m

(B) (1.55− 0.85)/(70× 9.8) = 1.02× 10−3N/m

(C) (70× 9.8)/(0.85) = 807N/m

(D) (70× 9.8)/(1.55− 0.85) = 980N/m



[b] If someone pulls down on Bill’s feet until the spring’s length is
1.85 meters, holds them there for a moment, then lets go (without
giving any sort of push), will Bill’s motion repeat itself
periodically? If so, how often? If not, why not?

(A) No: the spring will return to ` = 1.55m and stay there.

(B) Yes, with period T = 2π
√

70/980 = 1.7 s

(C) Yes, with period T = 2π
√

70× 9.8/980 = 0.83 s

(D) Yes, with period T = 2π
√

980/70 = 23.5 s

(E) Yes, with period T =
√

70/980 = 0.26 s

(F) Yes, with period T =
√

70/980/(2π) = 0.043 s

(G) Yes, with period T =
√

980/70 = 3.7 s

(H) Yes, with period T =
√

980/70/(2π) = 0.60 s



[c] Sketch a graph of the length of the spring as a function of time,
where t = 0 is where the person lets go of Bill’s feet. Be sure to
label the important features of the graph, e.g. period and
amplitude.

[d] If the person instead pulls down on Bill’s feet until the spring’s
length is 1.70 meters, then lets go, how will the period of the
motion be affected? (State what the period will be.)

[e] How will the amplitude of the motion be affected? (State what
the amplitude will be.)

[f] If Bill somehow managed to hold a 70 kg medicine ball while
sitting on this same spring, thus effectively doubling his mass,
would the natural period of the motion be affected? (State what
the period would be.)



If the amplitude of simple harmonic motion doubles, what happens
to the frequency (i.e. the natural frequency) of the system?

(A) The frequency is 1/2 as large.

(B) The frequency is 1/
√

2 as large.

(C) The frequency is unchanged.

(D) The frequency is
√

2 times as large.

(E) The frequency is 2 times as large.



If the amplitude of simple harmonic motion doubles, what happens
to the energy of the system?

(A) The energy is unchanged.

(B) The energy is
√

2 times as large.

(C) The energy is 2 times as large.

(D) The energy is 4 times as large.

One way to see that (D) is correct is to write

x = A sin(ωt) vx = ωA cos(ωt)

and then write out the energy

1

2
mv2 +

1

2
kx2

and see that energy is proportional to A2.
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Pendulum: gravity provides restoring torque

τ = Iα ⇒ α =
τ

I
τ = −mg` sin θ

I = m`2

Using sin θ = θ − θ3/6 + θ5/120 +− · · · ,

α = −g sin θ

`
≈ −gθ

`

for small θ, so
d2θ

dt2
= −g

`
θ

So for a pendulum (a point mass on a string, small amplitude),

ω0 =

√
g

`
f0 =

1

2π

√
g

`

(Mazur also generalizes this to objects with more complicated
rotational inertias. That’s only relevant for XC problems.)



Remember: oscillator period is independent of the amplitude

Mass on spring (use “0” to mean “natural”):

f0 =
1

2π

√
k

m
T0 = 2π

√
m

k

Simple pendulum (small heavy object at end of “massless” cable):

f0 =
1

2π

√
g

`
T0 = 2π

√
`

g

For a pendulum, the period is also independent of the mass,
because the restoring force (due to gravity) is proportional to
mass, so the mass cancels out.



Let’s measure the oscillation period T0 for this ball on a string, for
a few different values of `.

Remember,

T0 =
1

f0
= 2π

√
`

g

To speed us up, I’ve pre-calculated everything but `:

T0 = 2π

√
`

g
=

(
2π

√
1 meter

g

) √
`

1 meter

T0 = (2.01 seconds) ×
√

`

1 meter

Does it depend on amplitude? Does it depend on mass?



Imagine your old playground swing set. I’ll bet you remember
everybody going back and forth at about the same time interval,
even if some kids had different amplitudes, different phases, or
even different masses!

You probably also remember the time between swings to be
something like a few seconds:

T0 = 2π

√
`

g
≈ 2π

√
3.1 m

9.8 m/s2
≈ 3.5 s

Notice that this is independent of the mass of the kid.

Let’s try this for a very lightweight and a much heavier “kid!”

By the way, how often should I “kick” if I want to make the swing
go as high as possible? Time kicks to swing’s natural motion!



Most important points about periodic motion
I Meaning of amplitude, period, frequency
I Drawing or interpreting a graph of periodic motion
I Don’t confuse angular frequency vs. frequency (ω = 2πf )
I Any system that is in stable equilibrium can undergo

vibrations w.r.t. that stable position.
I Mass on spring: (natural) frequency is

f0 =
1

2π

√
k

m

I Pendulum: (natural) frequency is

f0 =
1

2π

√
g

`

I For a given mass, a larger restoring force (more stiffness)
increases f0.

I If the restoring force is elastic (not gravitational), then a
bigger mass decreases f0. For pendulum, f0 doesn’t depend on
mass, because restoring force is gravitational.



We often write x(t) in terms of ω = “natural angular frequency:”

x = A cos(ωt+φi )

but we can equivalently used f = “natural frequency:”

x = A cos(2πf t + φi )

I f = frequency, measured in cycles/sec, or Hz (hertz)

I ω = f
2π is angular frequency, measured in radians/sec, or s−1

I The frequency f = 2πω is much more intuitive than ω

I Using ω keeps the equations cleaner — can be helpful for
derivations, etc., so that you don’t have to keep writing 2π



“angular velocity” ω is our old friend from studying circular motion:



“frequency” f = ω
2π is more familiar from music, etc.



I A above middle C: 440 Hz

I Middle C: 261.63 Hz

I 440× (12)
3
4 = 261.63

I Octave = factor of 2 in
frequency f

I Half step = factor of 12
√

2
in frequency

I Whole step = factor of
6
√

2 in frequency

I Major scale (white keys,
starting from C) =
(root) W W H W W W H

I Minor scale (white keys,
starting from A) =
(root) W H W W H W W



resonance: Tacoma Narrows Bridge collapse

http://www.youtube.com/watch?v=j-zczJXSxnw

I We may not have time for this 6-minute video in class. If
you’ve never seen it, I highly recommend watching it!

I This one has no audio. There’s another version of this video
out there that has newsreel-style audio.

http://www.youtube.com/watch?v=j-zczJXSxnw


Let’s return to our two favorite examples of oscillating systems.

Natural frequency & period for mass on spring:

f0 =
1

2π

√
k

m
T0 = 2π

√
m

k

Natural frequency & period for simple pendulum (small heavy
object at end of “massless” cable):

f0 =
1

2π

√
g

`
T0 = 2π

√
`

g



Oscillation: vinitial = 0, xinitial 6= 0



Missing from previous picture: damping

I Without some kind of external push, a swingset eventually
slows to a stop, right? Eventually the mechanical energy is
dissipated by friction, air resistance, etc.

I A piano wire doesn’t vibrate forever, does it?

I Normally once you hit a key, the sound dies out after about
half a second or so.

I If your foot is on the sustain pedal, the sound lasts several
seconds.

I What is the difference?

I It’s the felt damper touching the strings!



Oscillation (damped, Q=10, f=1 Hz)



Oscillation (damped, Q=100, f=1 Hz)



Oscillation (damped, Q=100, f=1 Hz)



Damped, Q=100, f=1 Hz: energy vs time (in periods)



Damped, Q=1000, f=1 Hz: energy vs time (in periods)



For a given frequency f ,

I Less damping ↔ higher Q

I More damping ↔ lower Q

I Q = ωτ is number of radians after which energy has
decreased by a factor e−1 ≈ 0.37

I Equivalently, Q = 2πf τ is number of cycles after which
energy has decreased by a factor e−2π ≈ 0.002

I More simply, Q is roughly the number of periods after which
nearly all of the energy has been dissipated.

I “Tinny” sound of frying pan ↔ low Q (fast dissipation)

I Smooth, enduring sound of a gong, or a bell tower ↔ high Q
(slow dissipation)



Suppose you want to go for a long time on a swing set.

Dissipation is continuously removing energy.

If you’re going to keep going for many minutes, you need some
way of continuously putting energy back in.

If you’re a big kid, you swing your feet. If you’re a little kid, your
parent or older sibling pushes you.

The push of parent or swing of feet has to be at approximately the
natural frequency of the swingset, or else you don’t get anywhere!

But if your pushes are close to the right interval, the amplitude
gets larger and larger with each successive push, until eventually
the rate at which the push is adding energy equals the rate at
which dissipation is removing energy.

Hitting the right frequency is called resonance



The higher the Q (i.e. slower dissipation), the more periods you
have available for building up energy. A high Q makes it easy to
build up a really big amplitude!

But the higher the Q, the closer you have to get to the right
frequency in order to get the thing moving.



f0 = 1000 Hz, Q = 10: energy and phase vs. fpush



f0 = 1000 Hz, Q = 30: energy and phase vs. fpush



f0 = 1000 Hz, Q = 100: energy and phase vs. fpush
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