
▶ begin video preceding ws08

▶ If you have time, you might consider looking over Mazur ch08.



Chapter 8: Force

▶ Forces always come in pairs: when A and B interact,

F⃗A on B = − F⃗B on A

▶ “Interaction pairs” have equal magnitude, opposite direction.
Always. That’s called Newton’s third law. Difficult idea!

▶ The acceleration of object A is given by vector sum of all of

the forces acting ON object A, divided by mA. (Law #2.)

a⃗A =
1

mA

∑
F⃗on A

▶ In an inertial frame of reference, object A moves at constant
velocity (or stays at rest) if and only if the vector sum
(
∑

F⃗on A) equals zero. (Law #1.) #1 seems redundant?!



You push with a steady force of 25 N on a 50 kg desk fitted with
(ultra-low-friction) casters on its four legs. How long does it take
you (starting from rest) to get the desk across a room that is 25 m
wide?

(A) 0.71 s

(B) 1.0 s

(C) 1.4 s

(D) 5.0 s

(E) 7.1 s

(F) 10 s

(G) 14 s



Free-body diagram: A sort of visual accounting procedure for
adding up the forces acting ON a given object. FBD for ring:



Chapter 8 (“force”) reading Q #1

“Think about the familiar example of a basketball dropped from
eye level and allowed to bounce a few times. Describe the forces
acting on the basketball at its lowest point, as it is in contact with
the floor and is changing direction from downward to upward
motion.”

▶ Draw a free-body diagram of the ball at its lowest point
(while it is most squished). Include all forces acting ON the
ball. Indicate the direction of each force with its vector arrow.
Indicate the relative magnitudes of the forces by the lengths
of the arrows. Indicate the direction of the ball’s acceleration
with an arrow (or a dot).

▶ When you finish that, draw a second free-body diagram for
the ball — this time while the ball is in the air. Will the
diagram be different while the ball is rising vs. falling?

(My diagram appears on the next slide.)



Which free-body diagram best represents the forces acting on the
basketball at the bottom of its motion?

A

C

B

D



Which free-body diagram best represents the forces acting on the
basketball at the top of its motion?

A

C

B

D



If I were to draw a free-body diagram for the basketball when it is
halfway back down to the ground, that new diagram would be

(A) the same as

(B) slightly different from

(C) very different from

the drawing for the basketball when it is at the top of its motion?
(Neglect air resistance.)



Equal and opposite forces?

Consider a car at rest on a road. We can conclude that the
downward gravitational pull of Earth on the car and the upward
contact force of the road on the car are equal and opposite because

(A) the two forces form an interaction pair.

(B) the net force on the car is zero.

(C) neither: the two forces are not equal and opposite

(D) both (A) and (B)



Chapter 8 (“force”) reading Q #2

“Explain briefly in your own words what it means for the
interaction between two objects to involve ‘equal and opposite’
forces. Can you illustrate this with an everyday example?”

▶ For instance, if I push against some object O that moves,
deforms, or collapses in response to my push, is the force
exerted by O on me still equal in magnitude and opposite in
direction to the force exerted by me on O?

▶ If every force is paired with an equal and opposite force, why
is it ever possible for any object to be accelerated? Don’t they
all just cancel each other out?

▶ (I think the next example may help.)



Have you ever spotted the Tropicana juice train?!



vocab: powered “locomotive” pulls the unpowered “cars”



Equal and opposite forces?
An engine (“locomotive”) (the first vehicle of the train) pulls a
series of train cars. Which is the correct analysis of the situation?

(A) The train moves forward because the locomotive pulls forward
slightly harder on the cars than the cars pull backward on the
locomotive.

(B) Because action always equals reaction, the locomotive cannot
pull the cars — the cars pull backward just as hard as the
locomotive pulls forward, so there is no motion.

(C) The locomotive gets the cars to move by giving them a tug
during which the force on the cars is momentarily greater than
the force exerted by the cars on the locomotive.

(D) The locomotive’s force on the cars is as strong as the force of
the cars on the locomotive, but the frictional force by the
track on the locomotive is forward and large while the
backward frictional force by the track on the cars is small.

(E) The locomotive can pull the cars forward only if its inertia
(i.e. mass) is larger than that of the cars.



Let’s see the effect of including or not including the
frictional force of the tracks pushing forward on the
wheels of the engine.

I’ll pretend to be the engine!



Only external forces can accelerate a system’s CoM

Let’s define “system” to be locomotive+car.
Remember that forces internal to system cannot
accelerate system’s CoM.

To change the velocity of the CoM, we need a force
that is external to the system.

(By the way, when you look at the two free-body
diagrams on the next page, tell me if you see an
“interaction pair” of forces somewhere!)





a⃗CoM =

∑
F⃗ external

mtotal

It’s useful to remember that even if the several pieces of a system
are behaving in a complicated way, you can find the acceleration of
the CoM of the system by considering only the external forces
that act on the system.

Once again, a careful choice of “system” boundary often makes
the analysis much easier. We’ll see more examples of this soon.
(This topic also arises in upcoming worksheets, so we’ll try to
practice it here first.)



(digression)

Thanks to a 2019 student, here’s a neat video showing that the
CoM of a dropped slinky falls at acceleration g , even though the
top and bottom of the slinky do not move in unison:
https://www.youtube.com/watch?v=eCMmmEEyOO0&t=43

super-sized version (harder to see than original version):
https://www.youtube.com/watch?v=JsytnJ_pSf8&t=88

https://www.youtube.com/watch?v=eCMmmEEyOO0&t=43
https://www.youtube.com/watch?v=JsytnJ_pSf8&t=88


Hooke’s law

▶ When you pull on a spring, it stretches

▶ When you stretch a spring, it pulls back on you

▶ When you compress a spring, it pushes back on you

▶ For an ideal spring, the pull is proportional to the stretch

▶ Force by spring, on load is

Fx = −k (x − x0)

▶ The constant of proportionality is the “spring constant” k ,
which varies from spring to spring. When we talk later about
properties of building materials, we’ll see where k comes from.

▶ The minus sign indicates that if I move my end of the spring
to the right of its relaxed position, the force exerted by the
the spring on my finger points left.

Let’s look at some examples of springs.



A spring hanging from the ceiling is 1.0 m long when there is no
object attached to its free end. When a 4.0 kg brick is attached to
the free end, the spring is 2.0 m long. (For easier math, use
g = 10m/s2 = 10N/kg.) What is the spring constant of the
spring?

[Hint: draw a FBD for the brick, to figure out what magnitude
force the spring must be exerting on the brick. The magnitude of
the force exerted by the spring is the spring constant (k) times
how far the spring is stretched w.r.t. its relaxed length.]

(A) 5.0 N/m

(B) 10 N/m

(C) 20 N/m

(D) 30 N/m

(E) 40 N/m



Measuring your weight (F = mg) with a spring scale

Most bathroom scales work something like this:

Now suppose I take my bathroom scale on an elevator . . .



Bathroom scale on an accelerating elevator
A bathroom scale typically uses the compression of a spring to
infer the gravitational force (F = mg) exerted by Earth on you,
which we call your weight.

Suppose I am standing on such a scale while riding an elevator.
With the elevator parked at the bottom floor, the scale reads
700 N. I push the button for the top floor. The door closes. The
elevator begins moving upward. At the moment when I can feel
(e.g. in my stomach) that the elevator has begun moving upward,
the scale reads

(A) a value smaller than 700 N.

(B) the same value: 700 N.

(C) a value larger than 700 N.

You might want to try drawing a free-body diagram for your body,
showing the downward force of gravity, the upward force of the
scale pushing on your feet, and your body’s acceleration.



Tension vs. compression

▶ When a force tries to squish a spring, that is called
compression, or a compressive force

▶ When a force tries to elongate a spring, that is called tension,
or a tensile force

▶ We’ll spend a lot of time next month talking about
compression and tension in columns, beams, etc.

▶ For now, remember that tension is the force trying to pull
apart a spring, rope, etc., and compression is the force trying
to squeeze a post, a basketball, a mechanical linkage, etc.



hooray – we are finally talking about forces
▶ The force concept quantifies interaction between two objects.

▶ Forces always come in “interaction pairs.” The force exerted
by object “A” on object “B” is equal in magnitude and
opposite in direction to the force exerted by B on A:

F⃗AB = −F⃗BA

▶ The acceleration of object “A” is given by the vector sum of
the forces acting on A, divided by the mass of A:

a⃗A =

∑
F⃗(on A)

mA

▶ The vector sum of the forces acting on an object equals the
rate of change of the object’s momentum:∑

F⃗(on A) =
dp⃗A
dt



▶ An object whose momentum is not changing is in translational
equilibrium. We’ll see later that this will be a big deal for the
members of a structure! To achieve this, we will want all
forces acting on each member to sum vectorially to zero.

▶ The unit of force is the newton. 1 N = 1 kg ·m/s2.

▶ Free-body diagrams depict all of the forces acting on a given
object. They are used all the time in analyzing structures!

▶ The force exerted by a compressed or stretched spring is
proportional to the displacement of the end of the spring
w.r.t. its relaxed value x0. k is “spring constant.”

F spring
x = −k(x − x0)

▶ When a rope is held taut, it exerts a force called the tension
on each of its ends. Same magnitude T on each end.



▶ A large category of physics problems (and even architectural
structures, e.g. a suspension bridge) involves two objects
connected by a rope, a cable, a chain, etc.

▶ These things (cables, chains, ropes) can pull but can’t push.
There are two cables in this figure:



Tension in cables

▶ Usually the cables in physics problems are considered light
enough that you don’t worry about their inertia (we pretend
m = 0), and stiff enough that you don’t worry about their
stretching when you pull on them (we pretend k = ∞).

▶ The cable’s job is just to transmit a force from one end to the
other. We call that force the cable’s tension, T .

▶ A cable always pulls on both ends with same magnitude (T ),
though in opposite directions. [Formally: we neglect the
cable’s mass, and the cable’s acceleration must be finite.]

▶ E.g. hang basketball from ceiling. Cable transmits mg to
ceiling. Gravity pulls ball down. Tension pulls ball up. Forces
on ball add (vectorially) to zero.

▶ Let’s try an example.



Two blocks of equal mass are pulled to the right by a constant
force, which is applied by pulling at the arrow-tip on the right. The
blue lines represent two identical sections of rope (which can be
considered massless). Both cables are taut, and friction (if any) is
the same for both blocks. What is the ratio of T1 to T2?

(A) zero: T1 = 0 and T2 ̸= 0.

(B) T1 =
1
2T2

(C) T1 = T2

(D) T1 = 2T2

(E) infinite: T2 = 0 and T1 ̸= 0.

It’s worth drawing an FBD first for the two-mass system, then for
the left mass, then for the right mass.



Three blocks of equal mass are pulled to the right by a constant
force. The blocks are connected by identical sections of rope
(which can be considered massless). All cables are taut, and
friction (if any) is the same for all blocks. What is the ratio of T1

to T2?

(A) T1 =
1
3T2

(B) T1 =
2
3T2

(C) T1 = T2

(D) T1 =
3
2T2

(E) T1 = 2T2

(F) T1 = 3T2



Three blocks of equal mass are pulled to the right by a constant
force. The blocks are connected by identical sections of rope
(which can be considered massless). All cables are taut, and
friction (if any) is the same for all blocks. What is the ratio of T1

to T3?

(A) T1 =
1
3T3

(B) T1 =
2
3T3

(C) T1 = T3

(D) T1 =
3
2T3

(E) T1 = 2T3

(F) T1 = 3T3



A contraption something like this Atwood machine appears in a
worksheet (but with a spring added, to keep things interesting).

▶ Why aren’t the two masses accelerating?

▶ What is the tension in the cable when the two masses are
equal (both 5.0 kg) and stationary, as they are now?

▶ If I make one mass equal 5.0 kg and the other mass equal
5.1 kg, what will happen? Can you predict what the
acceleration will be?

▶ If I make one mass equal 5.0 kg and the other mass equal
6.0 kg, will the acceleration be larger or smaller than in the
previous case?

▶ Try drawing a free-body diagram for each of the two masses

▶ By how much do I change the gravitational potential energy of
the machine+Earth system when I raise the 6 kg mass 1 m?



▶ Two more comments:

▶ This machine was originally invented as a mechanism for
measuring g and for studying motion with constant
acceleration.

▶ The same concept is used by the “counterweight” in an
elevator for a building.



Atwood machine: take m1 > m2

Pause here: how can we solve for ax? Try it before we go on.



Atwood machine: write masses’ equations of motion

m1g − T = m1ax

T −m2g = m2ax

Solve second equation for T ; plug T
into first equation; solve for ax :

T = m2ax +m2g ⇒ m1g − (m2ax +m2g) = m1ax ⇒

(m1 −m2)g = (m1 +m2)ax ⇒ ax =
m1 −m2

m1 +m2
g

For m2 = 0, ax = g (just like picking up m1 and dropping it)

For m1 ≈ m2, ax ≪ g : small difference divided by large sum.



ax =
m1 −m2

m1 +m2
g

For example, m1 = 4.03 kg, m2 = 3.73 kg:

ax =
m1 −m2

m1 +m2
g =

(
0.30 kg

7.76 kg

)(
9.8 m/s2

)
= 0.38 m/s2

How long does it take m1 to fall 2 meters?

x =
ax t

2

2
⇒ t =

√
2x

ax
=

√
(2)(2 m)

(0.38 m/s2)
≈ 3.2 s



You can also solve for T if you like (eliminate ax), to find the
tension while the two masses are free to accelerate (no interaction
with my hand or the floor).

Start from masses’ equations of motion:

m1g − T = m1ax , T −m2g = m2ax

Eliminate ax :

m1g − T

m1
=

T −m2g

m2
⇒ m1m2g −m2T = m1T −m1m2g

⇒ 2m1m2g = (m1 +m2)T ⇒ T =
2m1m2

m1 +m2
g

consider extreme cases: m2 = m1 vs. m2 ≪ m1.



worksheet problem: tricky!
7*. A modified Atwood machine is shown below. Each of the three
blocks has the same inertia m. One end of the vertical spring,
which has spring constant k, is attached to the single block, and
the other end of the spring is fixed to the floor. The positions of
the blocks are adjusted until the spring is at its relaxed length.
The blocks are then released from rest. What is the acceleration of
the two blocks on the right after they have fallen a distance D?



Draw a FBD for mass 2. Then draw a FBD for mass 1. Assume
that a⃗ = 0⃗ for both masses.





Next: How would these two diagrams change if we imagine that
the ceiling is actually the ceiling of an elevator that is accelerating
upward at ax = +1.96m/s2 (that’s 0.2g — you can round off).



How do you use these two FBDs to write Newton’s 2nd law for
each of the two masses?



Note: because the length of an (idealized) taut cable doesn’t
change as its tension increases, a1x = a2x . Distance between
blocks only changes if the cable goes slack (no longer in tension).



In the 17th century, Otto von Güricke, a physicist in Magdeburg,
fitted two hollow bronze hemispheres together and removed the air
from the resulting sphere with a pump. Two eight-horse teams
could not pull the halves apart even though the hemispheres fell
apart when air was readmitted. Suppose von Güricke had tied both
teams of horses to one side and bolted the other side to a giant
tree trunk. In this case, the tension on the hemispheres would be

(A) twice

(B) exactly the same as

(C) half

what it was before.

(To avoid confusion, you can replace the phrase “the hemispheres”
with the phrase “the cable” if you like. The original experiment was
a demonstraton of air pressure, but we are interested in tension.)



Suppose a horse can pull 1000 N

F⃗A on B = −F⃗B on A

|F⃗A on B | = |F⃗B on A| = 1000 N

T = 1000 N

a⃗A = 0⃗

a⃗B = 0⃗

The acceleration of each horse is zero. What are the two
horizontal forces acting on horse A? What are the two horizontal
forces acting on horse B?



Suppose tree stays put, no matter how hard horse pulls

F⃗A on tree = −F⃗tree on A

|F⃗A on tree| = |F⃗tree on A| = 1000 N

T = 1000 N

a⃗A = 0⃗

What are the two horizontal forces acting on horse A?



Suppose tree stays put, no matter how hard horses pull. Somehow
we attach both horses to the left end of the same cable.

F⃗A+B on tree = −F⃗tree on A+B

|F⃗A+B on tree| = |F⃗tree on A+B | = 2000 N

T = 2000 N

a⃗horsesA+B = 0⃗

What are the external forces acting on the two-horse system
(system = horse A + horse B)?



Horse C loses his footing when he pulls > 1000 N

|F⃗A+B on C| = |F⃗C on A+B | = 2000 N

T = 2000 N

Force of ground on C is 1000 N to the right. Tension pulls on C
2000 N to the left. C accelerates to the left.

|a⃗C | = (2000 N− 1000 N)/mC



Today, while we happen to have this rope attached to the ceiling, I
want to re-visit something (related to forces) that I demonstrated
on the first day of class. Believe it or not, this relates pretty
directly to architecture.

My friend and I both want to hang on to a rope by our hands,
perhaps because being up above the ground lets us peek over a tall
fence and see into an amazing new construction site next door.

We consider two different methods of hanging onto the rope. In
the first method, I hold the rope with my hands, about 5 meters
off the ground, and my friend (whose mass is the same as mine)
holds the rope with his hands, about 3 meters off the ground.

In the second method, I told the rope with my hands, as before,
and my friend holds onto my feet (instead of the rope).

Let’s draw a picture, to make it more clear.







The downward force exerted by my hands on the rope is . . .

(A) The same for both methods: equal to mg (m = my mass)

(B) The same for both methods: equal to 2mg

(C) Twice as much for 1st method (2mg vs. mg)

(D) Twice as much for 2nd method (2mg vs. mg)



A real-world use for free-body diagrams! But these diagrams aren’t
careful to single out one object, to indicate clearly what that object
is, and to draw only the forces acting ON that object. (Alas.)

The author uses the symbol P for a “point” force (or point load,
or a “concentrated load”), as is the custom in engineering and
architecture. When you see “P” here, pretend it says “F” or “mg”
instead.



worksheet problem: slightly modified (skip?)

9*. A tugboat pulls two barges (connected in series, like a train,
with taut ropes as couplings) down a river. The barge connected
to the tugboat, carrying coal, has inertia m1. The other barge,
carrying pig iron, has inertia m2. The frictional force exerted by
the water on the coal barge is F f

w1, and that exerted by the water
on the pig-iron barge is F f

w2. The common acceleration of all three
boats is ax . Even though the ropes are huge, the gravitational
force exerted on them is negligible, as are the ropes’ inertias. How
can you solve for the tension in each rope?



worksheet problem (modified): (skip?)

10*. A red cart of mass mred is connected to a green cart of mass
mgreen by a relaxed spring of spring constant k . The green cart is
resting against a blue cart of mass mblue. All are on a low-friction
track. You push the red cart to the right, in the direction of the
green cart, with a constant force F c

you,green. (a) What is the
acceleration of the center-of-mass of the three-cart system?
(b) What is the acceleration of each cart the instant you begin
to push? (c) What is the acceleration of each cart the instant
when the spring is compressed a distance D with respect to its
relaxed length?



(skip?)

Estimate the spring constant of your car springs. (Experiment: sit
on one fender.)

(What do you think?)



(skip)
When a 5.0 kg box is suspended from a spring, the spring stretches
to 1.0 m beyond its equilibrium length. In an elevator accelerating
upward at 0.98 m/s2 (that’s “0.1 g”), how far will the spring
stretch with the same box attached?

(A) 0.50 m

(B) 0.90 m

(C) 1.0 m

(D) 1.1 m

(E) 1.2 m

(F) 1.9 m

(G) 2.0 m

(By the way: When a tall building sways back and forth in the
wind, the uncomfortable acceleration experienced by the occupants
is often measured as a fraction of “g .”)



(skip)

Let’s start by drawing a FBD for the box when the elevator is not
accelerating.



(skip)

F c
sb,x + FG

Eb,x = max = 0

F c
sb,x = −k (x − x0) = −k(−1 meter) FG

Eb,x = −mg

+k(1 meter)−mg = max = 0

Next, what happens if elevator is accelerating upward at 1 m/s2?



(skip)

F c
sb,x + FG

Eb,x = max = +1 m/s2

F c
sb,x = −k (x − x0) FG

Eb,x = −mg

−k(x − x0)−mg = max = +0.1mg

combine with +k(1 meter)−mg = 0 from last page



(skip)

−k(x − x0)−mg = max = +0.1g ⇒ −k(x − x0) = +1.1mg

combine with +k(1 meter)−mg = 0 ⇒ +k(1 meter) = mg

Divide two boxed equations: get x − x0 = −1.1 meters

So the spring is now stretching 1.1 meters beyond its relaxed
length (vs. 1.0 meters when ax = 0).

The upward force exerted by the spring on the box is m(g + ax).



(skip)

When a 5.0 kg box is suspended from a spring, the spring stretches
to 1.0 m beyond its equilibrium length. In an elevator accelerating
upward at 0.98 m/s2, how far will the spring stretch with the same
box attached?

(A) 0.50 m

(B) 0.90 m

(C) 1.0 m

(D) 1.1 m

(E) 1.2 m

(F) 1.9 m

(G) 2.0 m
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