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I This file has nothing to do with Mazur ch13, which we will
not cover in this course. (The next planned Mazur chapter is
ch15 in the last week of the term.)

I These slides draw from:

I Giancoli ch09 (statics, etc)

I Onouye/Kane ch02 (statics)

I Onouye/Kane ch03 (analysis of trusses, etc)

I pages 12–16 of positron.hep.upenn.edu/p8/files/equations.pdf
(which I’ll paste into these slides for your convenience)



Chapter G9: static equilibrium, etc.

Static equilibrium: all forces/torques acting ON the object sum to
zero ∑

Fx = 0,
∑

Fy = 0,
∑

τ = 0

Young’s modulus: ∆L
L0

= 1
E

(
force
area

)
Onouye/Kane ch1: introduction

static loads: gravitational forces, due to the weight of the structure
or its contents. Includes dead loads due to the weight of the
building and permanently attached components thereof, and live
loads that come and go, such as furniture and people.

dynamic loads: inertial forces, due to resisting the motion of mass.
For example: wind, vibration, earthquakes, falling objects.



Onouye/Kane ch2: statics

A force is characterized by point of application, magnitude, and
direction. The force’s line of action passes through the point of
application of the force and is in the same direction as the force.

When we idealize an object as a rigid body, we assume that it
undergoes negligible deformation in response to applied forces. If
you think of a body as a huge number of constituent particles, the
body is rigid if the relative distance between every pair of
consituent particles is fixed. The rules of statics (i.e. static
equilibrium) apply to rigid bodies. Statics in a plane gives us 3
equations (see below), allowing us to solve for 3 unknown forces
(or 3 unknown force components, if directions are unknown). If
there are more than 3 unknown force components, then we need
additional information about how the body deforms in response to
applied forces (i.e. the rigid-body idealization is no longer
sufficient); that goes beyond the scope of statics. [But occasionally
one can use statics to determine more than 3 unknown forces by
using e.g. mirror symmetry to eliminate all but 3 unknowns.]



(O/K ch2) Usually a load is a specified external force that a
structure must be designed to bear, such as the weight of snow on
the roof or the weight of the building itself. Usually a reaction is
an unknown external force whose value is calculated by imposing
the conditions of static equilibrium on an object. If you and I sit on
a see-saw, our weights and the weight of the wooden plank are
loads; the upward contact force exerted by the pin on the center of
the plank is a reaction. A free-body diagram for the plank includes
the specified loads and the to-be-determined reaction.

Principle of transmissibility (applies to rigid bodies only): the
acceleration and angular acceleration of a rigid body are unchanged
by replacing a given force F1 acting at point A with a new force F2

acting at point B as long as forces A and B have the same line of
action, same magnitude, and point in the same direction.

Concurrent forces have lines of action that intersect at a common
point. The effects on a rigid body are unchanged by replacing
several concurrent forces with a single resultant force. The
resultant of several forces is the vector sum of those forces.



(O/K ch2) The moment of a force is engineers’ term for what
physicists call torque. It is force multiplied by perpendicular lever
arm, with a sign given by the convention that counterclockwise is
positive and clockwise is negative. In 3 dimensions, a torque (or
moment) is given by the vector (“cross”) product ~τ = ~r × ~F and
the right-hand rule. You can’t define a moment (torque) without
first defining a reference point, also known as a pivot, or an axis,
or an origin for a coordinate system. The vector ~r in the expression
~r × ~F is measured with respect to that pivot point, i.e. the tail of ~r
is at the pivot.

Varignon’s theorem: to compute the moment of a force, you can
decompose the force into components (having the same point of
application) and sum (algebraically, i.e. with proper signs) the
moments of the components.

A couple is two forces that sum to zero (~F and −~F ) and have
parallel (you might say antiparallel) lines of action separated by a
distance d . A couple will tend to cause rotational acceleration but
will not cause linear acceleration of a body. The moment of a
couple has magnitude Fd .



(O/K ch2) A force ~F acting on a rigid body can be moved to any
given point of application A (with a parallel line of action)
provided that a couple ~M is added. The moment M of the couple
equals Fd⊥, where d⊥ is the perpendicular distance between the
original line of action and the new location A.

In the 2D plane, the three equations of statics are:
∑

Fx = 0,∑
Fy = 0, and

∑
	P M = 0, where P is a chosen pivot point for

evaluating moments.

When engineers and architects say Free Body Diagram, they are
referring to what Mazur calls an Extended Free Body Diagram. An
EFBD starts with a cartoon-like sketch of the body in question and
indicates with an arrow each external force acting on the body,
carefully indicating the direction and the point of application of the
force. Often unknown reaction forces are drawn with a single slash
through the arrow. External moments (illustrated via types of
connections) are indicated using curved arrows. An unknown
moment reaction is indicated using a single slash through a curved
arrow.



(O/K ch2) Support forces are often drawn as stereotyped pin (or
hinge) supports and roller supports. A pin can exert both
horizontal and vertical support (reaction) forces but cannot exert
any moment (torque) about the pin axis. A roller can only exert a
force normal to the surface on which it rolls and cannot exert a
moment. So a pin (or hinge) support contributes two unknown
reaction force components, while a roller support contributes only
one unknown reaction force component. A body that has a pin
support beneath one end and a roller support benath the opposite
end is simply supported. One pin and one roller support constitute
3 total unknown forces, which is exactly the number of unknowns
that the laws of statics in a 2D plane can determine.

Another type of connection, not illustrated in chapter 2, is a
“built-in” connection, which (in the 2D plane) can exert two forces
and a moment. For an example, think of how a lamppost is
attached to the sidewalk. It resists motion along its axis, resists
motion parallel to the sidewalk, and also resists the toppling over of
the lamppost, i.e. it resists rotation about the point of connection.



(O/K ch2) A body on which more than three unknown forces are
exerted is called statically indeterminate. To solve a statically
indeterminate system, you need to know how the body deforms
under the applied load.

Onouye/Kane ch3: selected determinate systems

The resultant force exerted on the end of a cable must be tangent
to the end of the cable.



(O/K ch3) A concentrated load has a point of application that
can be represented as a single point. For example, the weight of a
single lead brick placed at the center of a long beam. A distributed
load is spread out over a wide area (usually indicated as force per
unit length on a 2D sketch). The most common symbol used for
concentrated (or “point”) loads is P. The most common symbol
used for distributed loads is w , though some books use ω.

For statics calculations of rigid bodies (but not for elastic
calculations such as the deflection of beams!) a distributed load w
can be replaced by the equivalent concentrated load P. The point
of application of P is the centroid of w , and the magnitude of P is
the integral of w , i.e. the area under the w(x) curve,

∫
w(x) dx .

Usually this “integral” can be simply calculated using formulas for
the area of a rectangle, a triangle, a trapezoid, etc.



(O/K ch3) There are two ways to analyze a truss: one is the
method of joints and the other is the method of sections. Analysis
of a truss assumes: (a) members (bars) are straight line segments
and can support only axial forces, i.e. forces parallel to the axis of
the bar; (b) all joints are pin connections, i.e. connections that can
exert horizontal and vertical forces but not moments about the pin;
(c) the weight of the truss bars themselves is usually neglected;
(d) loads are applied to the truss at the pinned joints only. A given
bar is either in compression (the forces exerted on the ends of the
bar are trying to squish the bar along its axis) or in tension (the
forces exerted on the ends of the bar are trying to stretch the bar
along its axis).

A necessary condition for a planar truss having J joints and B bars
to be solvable using the methods of statics is B = 2J − 3. Solving
the truss involves finding B unknown bar tensions/compressions
plus 3 unknown support reactions (e.g. one pin and one roller
support). The method of joints will give us 2 equations per joint.
So we have 2J equations to determine B + 3 unknowns. Thus
2J = B + 3.



(O/K ch3) The method of joints is conceptually simple, but can
be tedious. At each joint, you apply the two force equations for
static equilibrium:

∑
Fx = 0 and

∑
Fy = 0 (consider forces acting

on the joint itself). There is no moment equation because all
forces at the joint have lines of action passing through the joint. I
usually label the support “reaction” forces e.g. RAx , RAy , RCy for
reaction forces at joints A and C , and then label the
tension/compression of each bar as if every bar were in tension:
TAB , TBC , TAC for bars AB, BC , AC connecting joints A, B, C .
In the end, you will find TAB > 0 if bar AB is in tension and you
will find TAB < 0 if bar AB is in compression. To eliminate the
need to solve large systems of simultaneous equations, always start
from a joint having at most two unknown forces; if you find a joint
having only one unknown force, so much the better.



(O/K ch3) In the method of sections you often (but not always)
start by drawing an EFBD for the truss as a whole and solving for
the unknown support reactions; sometimes this step is unnecessary.
Then you draw a hypothetical line (or curve) that divides the truss
into two pieces; the line should pass through bars, not joints, and
should cut through no more than three bars whose forces are
unknown. If there is a particular bar whose tension/compression
you want to find, be sure that your cut line passes through that
bar. You then draw an EFBD for either the right side or the left
side of the truss, including the forces exerted (by the invisible side
of the truss) on the bars cut by the section line. Be careful with the
directions: if the cut bar (let’s say it’s bar AB) is assumed to be in
tension, then the EFBD for the right side of the cut includes TAB

pointing (in general diagonally) to the left; alternatively the EFBD
for the left side of the cut would include TAB pointing (in general
diagonally) to the right. You want to draw the external forces
exerted on the part of the truss whose EFBD you have drawn. . . .



(O/K ch3) (method of sections) . . . You then use the three
equations for static equilibrium in a plane:

∑
Fx = 0,

∑
Fy = 0,

and
∑
	P M = 0, where the pivot point P is strategically chosen

so that the moment equation omits any forces that you do not care
about. (Forces whose lines of action pass through the pivot P will
have zero lever arm and will thus not appear in the moment
equation.) You are summing forces and moments acting on the
visible (i.e. left or right) portion of the truss as a whole. Whereas
the method of joints found the conditions for each joint to be in
equilibrium, the method of sections finds the conditions for the
visible half of the truss as a whole to be in equilibrium. If you are
only interested in finding a single bar force, and if you choose just
the right section, and if you choose just the right pivot point, you
can often find the desired force by solving only the moment
equation. The method of joints is a brute-force method that you
can imagine programming a computer to do for you; the method of
sections requires some finesse.

Pinned frames, multiforce members, and retaining walls are outside
the scope of this course.



Here is where we left off last time:

Now suppose a 51 kg sign is suspended from a cable (but not at
the center), as shown below.

How would you find the tensions T1 and T2?

Once you know T1 and T2, what are the horizontal and vertical
forces exerted by the two supports on the cable?



How many equations does the “method of joints” allow us to write
down for this truss? (Consider how many joints the truss has.)

(A) 4 (B) 8 (C) 12 (D) 15



How many unknown internal forces (tensions or compressions) do
we need to determine when we “solve” this truss?

(A) 4 (B) 5 (C) 6 (D) 7



This is a “simply supported” truss. How many independent
“reaction forces” do the two supports exert on the truss? (If there
are independent horizontal and vertical components, count them as
separate forces.)

(A) 2 (B) 3 (C) 4 (D) 6



Notice that 8 = 5 + 3.

For a planar truss that is stable and that you can solve using the
equations of static equilibrium,

2Njoints = Nbars + 3

You get two force equations per joint. You need to solve for one
unknown tension/compression per bar plus three support
“reaction” forces.



What do we learn by writing∑
Fx = 0,

∑
Fy = 0,∑

Mz = 0 for the truss as a
whole? (Use joint A as pivot.)

(I write RAx , RAy , RCy for the
3 “reaction forces” exerted by
the supports on the truss.)

(A) RAy − 2 kN + RCy = 0,
RAx + 1 kN = 0,
−(2 kN)(2 m)− (1 kN)(2 m) + (RCy )(2 m) = 0

(B) RAy − 2 kN + RCy = 0,
RAx + 1 kN = 0,
−(2 kN)(2 m)− (1 kN)(1 m) + (RCy )(4 m) = 0

(C) RAy − 2 kN + RCy = 0,
RAx + 1 kN = 0,
−(2 kN)(2 m)− (1 kN)(2 m) + (RCy )(4 m) = 0



What two equations does the
“method of joints” let us write
for joint C ?

(Let the tension in member
i ↔ j be Tij . For compression
members, we will find Tij < 0.)

(A) TCD − TBC cos θ = 0
RCy − TBC sin θ = 0

(B) TCD − TBC sin θ = 0
RCy − TBC cos θ = 0

(C) TCD + TBC cos θ = 0
RCy + TBC sin θ = 0

(D) TCD + TBC sin θ = 0
RCy + TBC cos θ = 0



What two equations does the
“method of joints” let us write
for joint A ?

(Let the tension in member
i ↔ j be Tij . For compression
members, we will find Tij < 0.)

(A) RAx − TAD − TAB cos θ = 0
RAy − TAB sin θ = 0

(B) RAx − TAD − TAB sin θ = 0
RAy − TAB cos θ = 0

(C) RAx + TAD + TAB cos θ = 0
RAy + TAB sin θ = 0

(D) RAx + TAD + TAB sin θ = 0
RAy + TAB cos θ = 0



What two equations does the
“method of joints” let us write
for joint D ?

(Let the tension in member
i ↔ j be Tij . For compression
members, we will find Tij < 0.)

(A) −2 kN + TBD = 0 and −TAD + TCD = 0

(B) −2 kN + TBD = 0 and −TAD − TCD = 0

(C) −2 kN− TBD = 0 and −TAD + TCD = 0

(D) −2 kN− TBD = 0 and −TAD − TCD = 0



I named each member force Tij (for “tension”) and let Tij > 0
mean tension and Tij < 0 mean compression. Once you’ve solved
the truss, it’s best to draw the arrows with the correct signs for
clarity. (Next page.)



Forces redrawn with arrows in correct directions, now that we
know the sign of each force. Members AB and BC are in
compression. All other members are in tension.



Another option is to write down all 2J equations at once and to
type them into Mathematica, Maple, Wolfram Alpha, etc.

In[92] eq := {

RAx + TAB*cos + TAD == 0,

RAy + TAB*sin == 0,

-TAB*cos+TBC*cos+1 == 0,

-TBD-TAB*sin-TBC*sin == 0,

-TAD+TCD == 0,

-2 + TBD == 0,

-TCD - TBC*cos == 0,

RCy + TBC*sin == 0,

sin==1.0/Sqrt[5.0],

cos==2.0/Sqrt[5.0]

}

In[93] Solve[eq]

Out[93] {

RAx → -1.,

RAy → 0.75,

RCy → 1.25,

TAB → -1.67705,

TAD → 2.5,

TBC → -2.79508,

TBD → 2.,

TCD → 2.5,

cos → 0.894427,

sin → 0.447214

}



How many “reaction forces” are exerted by the supports (i.e.
exerted on the truss by the supports)?



How many internal forces (tensions or compressions in the
members) do we need to solve for to “solve” this truss?



Do you see any joint at which there are ≤ 2 unknown forces? If so,
we can start there. If not, we need to start with an EFBD for the
truss as a whole.



Try to guess RA,x , RA,y , and RD,y by inspection. Then let’s check
with the usual equations.



Now start from a joint having ≤ 2 unknown forces. In this case, I
just went through the joints alphabetically. You can make your life
easier by seeking out equations having just 1 unknown.





TAB = −0.577 kN, TAE = +0.289 kN, TBE = +0.577 kN,
TBC = −0.577 kN, TCE = −0.577 kN, TCD = −1.732 kN,
TDE = +0.866 kN. My notation: tension > 0, compression < 0.





Let’s try drawing an EFBD for the right side of the cut (“section”).







Here’s another truss problem that you can solve using the Method
of Sections. Find forces in members CE, CF, and DF, with
assumed force directions as shown.

I What happens if an assumed force direction is backwards?

I Where should we “section” the truss?

I Then what do we do next?



If all goes well, we should get
TCF = +3

√
2 kN, TCE = +8 kN, TDF = −11 kN.





This is not really a “truss problem,” since we’re not asked to solve
for the internal forces in the truss, but it is an example of a pretty
tricky equilibrium problem.

Let’s try working through this together in class. (I think it’s
deviously tricky!)

Notice, from the given dimensions: the angle of the incline is the
same as the interior angle at joints A and B of the truss. Also
notice pin/hinge support at A and roller support at B.











Here’s what puzzled me last time I looked at this statics problem:
You can evaluate the moment (about A) due to the horizontal
1 kN force in two ways — with the same result, of course:

I how we did it: −1 kN × 6.5m sin(2θ) = 4.615 kN ·m
I clever, tricker way: −1 kN × 12m sin θ = 4.615 kN ·m

We discovered a geometrical proof that sin(2θ) = 2 cos θ sin θ.


