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I This file has nothing to do with Mazur ch14, which we will
not cover in this course. (The next planned Mazur chapter is
ch15 in the last week of the term.)

I Onouye/Kane ch6 (cross-sectional properties), ch7 (beams I),
ch8 (beams II)

I pages 17–25 of positron.hep.upenn.edu/p8/files/equations.pdf
(which I’ll paste into these slides for your convenience)



(Onouye/Kane ch6: cross-sectional properties)

The centroid, denoted (x , y), is the mass-weighted average of the
centers-of-mass of the constituent parts: x = (

∑
i ximi )/(

∑
i mi ),

and y = (
∑

i yimi )/(
∑

i mi ), where m stands for mass. To find the
centroid of a continuous object, use an integral instead of a sum:
x = (

∫
x dm)/(

∫
dm), and y = (

∫
y dm)/(

∫
dm). If the material

is of uniform density and thickness, then you can use area A
instead of mass m.

The centroid of a right triangle one side of which lies along the x
axis (base b) and one side of which lies along the y axis (height h)
is (x , y) = (b/3, h/3). The area is of course bh/2.

If a shape has a hole in it, you can “subtract” the hole from the
shape by using a negative area for the hole in the centroid
calculation!



The second moment of area (which this book calls moment of
inertia of an area, and most engineers and architects simply call
moment of inertia) is most commonly given by Ix =

∫
y2 dA.

Second moment of area is a difficult but important concept that
helps to explain why an I-beam has the shape it has (with material
far away from the y = 0 plane) and why a floor joist (“on edge”)
is stiff but the same board used as a plank (“on the flat”) is floppy.
As we’ll see, a larger Ix makes a beam more stiff.

I avoid the phrase “moment of inertia” because it is ambiguous:
most structures books use the phrase “moment of inertia” to refer
to what I call “second moment of area,” while most physics books
use the phrase “moment of inertia” to refer to what Mazur calls
“rotational inertia.” Saying “rotational inertia” and “second
moment of area” is always unambiguous, while saying “moment of
inertia” is often ambiguous.



For a beam of rectangular cross-section b × h and uniform density
supporting a vertical load, Ix = bh3/12. Imagine a wooden beam
(like a “two by ten”) whose cross-section has small dimension d
and large dimension D (e.g. maybe d = 4 cm and D = 20 cm). If

you orient the beam “on edge”, like this , then you get

Ix( ) = dD3/12. If you orient the beam “on the flat,” like this

, then you get Ix( ) = Dd3/12. The ratio is

Ix( )/Ix( ) = (D/d)2, which is 52 = 25 for the numbers given
above. So the same piece of wood is 25× stiffer (for these example
numbers) when oriented as a joist than it is when oriented as a
plank.



Ix , which represents how far the material of a beam is spread out
from the y = 0 plane, is called Ix because if you draw a
cross-section of the beam, the y = 0 plane is the x axis. So in
cross-secton, Ix quantifies how far the material is from the x axis.

If a beam’s cross-section consists of several components having
cross-sectional areas A1, A2, A3, vertical centroids y1, y2, y3, and
their own second moments of area Ix1, Ix2, Ix3, then you can
compute the second moment of area of the composite beam using
the parallel axis theorem:

Ix = Ix1 + Ix2 + Ix3 + A1y
2
1 + A2y

2
2 + A3y

2
3 .

You could use this, for example, to find Ix for an I-beam: .
Using more general notation, the parallel axis theorem reads
Ix =

∑
i (Ixi + Aiy

2
i ). Warning: the way I’ve written this expression,

you must choose y = 0 to be the vertical centroid of the
cross-section, i.e. you must ensure that
y = (

∑
i yiAi )/(

∑
i Ai ) = 0.



The radius of gyration rx =
√

Ix/A is the distance from the x axis
at which you could concentrate all of the beam’s material
(symmetrically above and below) to get the same second moment
of area Ix . Notice that Ix = Ar2

x . The only place you are likely to
use the radius of gyration is in calculating a slenderness ratio of a
column. (Reading O/K ch9 on columns is an extra-credit option.)



(Onouye/Kane ch7: simple beams)

The most common support configurations for beams are simply
supported (pin beneath one end and roller beneath the other end),
overhang (like simply supported, but ends of beam extend beyond
one or both supports), and cantilever (one “fixed” end, and one
“free” end).

A load diagram is basically an EFBD of the beam. Remember to
include the vertical reaction forces exerted by the supports on the
beam. Sometimes the load diagram is represented as a graph of
the distributed load w(x) (force per unit length). In load, shear,
and moment diagrams, the coordinate x measures distance along
the length of the beam, starting from the left end of the beam. It
is confusing that this meaning of the coordinate x is different from
its meaning in chapter 6 — at least y will have the same meaning
here as in chapter 6.



The shear diagram, V (x), is drawn directly below the load
diagram. V (x) has dimensions of force (newtons, kilonewtons,
pounds, kilopounds (“kips”)). If you section the beam into two
halves at a distance x from the left end of the beam, the function
V (x) represents the upward force exerted by the left side on the
right side of the beam at that section. Equivalently,
V (x) = −

∫
w(x) dx . Also equivalently, V (x) is the running sum

of the loads and reactions (upward minus downward) to the left of
(and including) the section at x .



The moment diagram, M(x), is drawn directly below the shear
diagram. M(x) has dimensions of a bending moment (or torque),
i.e. force×distance (newton-meters, kilonewton-meters,
foot-pounds, kilopound-feet). If you section the beam into two
halves at a distance x from the left end of the beam, the absolute
value of the function M(x) represents the magnitude of the
moment (torque) that one side of the beam exerts on the other
side. But the sign convention is such that “a positive moment
makes the beam smile.” So if the beam curves upward (smiles)
under load (if d2Y /dx2 > 0) then M > 0, and if the beam curves
downward (frowns) under load (if d2Y /dx2 < 0) then M < 0.
Mathematically M(x) =

∫
V (x)dx .

Since derivatives are less tricky than integrals, it may be worth
remembering that dM(x)/dx = V (x). The shear diagram V (x) is
the derivative (the slope) of the moment diagram M(x). For
distributed loads, it is also worth remembering that
dV (x)/dx = −w(x). The distributed load w(x) is minus the slope
of the shear diagram V (x).



A free end, a pin-supported end, and a roller-supported end are all
incapable of supporting a bending moment. So for any of those
end conditions, M(0) = 0 and M(L) = 0. An exception is the
cantilever beam, which has one free end and one fixed end. The
fixed end of a cantilever has M 6= 0. Since a cantilever always
frowns under a gravitational load, the fixed end has M < 0.

Sometimes one draws two additional curves beneath M(x). The
slope of the loaded beam, θ(x) = dY /dx , is given by
EI θ(x) =

∫
M(x) dx , where E is Young’s modulus (elastic

modulus) and I is the second moment of area (called Ix in chapter
6). If one draws θ(x), it is drawn directly below the M(x) diagram.
The deflected shape of the loaded beam, Y (x) is given by
Y (x) =

∫
θ(x) dx . If one draws Y (x), it is drawn directly below

the θ(x) diagram.



While you will probably never actually draw the θ(x) and Y (x)
curves, a key takeaway is that you integrate the M(x) curve two
more times to get Y (x). That implies that if M(x) is linear (a
polynomial of order one), then the shape Y (x) of the deflected
beam is a polynomial of order three. And if M(x) is quadratic (a
polynomial of order two) then the shape Y (x) of the deflected
beam is a polynomial of order four. So it turns out that the
maximum deflection of a beam of length L under a concentrated
load is usually proportional to L3, and the maximum deflection of a
beam of length L under a uniform distributed load is usually
proportional to L4, just because of calculus.



(Onouye/Kane ch8: bending and shear stresses in beams)

The neutral axis of a beam’s cross-section lies along the vertical
centroid y of the cross-section. Extending the neutral axis along
the length of the beam defines the neutral surface. If certain
conditions are met (the beam is initially straight, is of constant
cross-section, and is of uniform composition; the beam is elastic
and has equal elastic moduli in tension and compression; the beam
is bent only with couples (bending moments at the ends); the
beam is not twisted), then the longitudinal elements (fibers —
easy to imagine for a wooden beam) of the neutral surface will be
neither in tension nor in compression; they will undergo no change
in length.



For a “simply supported” beam (which makes a shape
under load), longitudinal fibers below the neutral surface are in
tension (elongated), while fibers above the neutral surface are in
compression (shortened). For a cantilever (which makes a

shape under load), fibers above the neutral surface are in
tension, while fibers below the neutral surface are in compression.
It helps to imagine a wooden beam with fibers (grains) running
along the axial length of the beam.

Let’s imagine an initially horizontal beam of length L0 bent into a
shape by applying a bending moment M at each end:

counterclockwise at the left end and clockwise at the right end.
Fibers above the neutral axis (y > 0) will be lengthened (L > L0)
while fibers below the neutral axis (y < 0) will be shortened
(L < L0).



A key idea is that we can approximate the deflected beam as an
arc of a circle of radius R, where the bending moment is inversely
related to the radius of curvature of the beam: M ∝ 1/R. The
larger the bending moment, the tighter the circular arc into which
the beam bends. For a constant bending moment M, lines that are
initially vertical converge toward the center of the circle, as shown
below.

We can use similar triangles to argue that the longitudinal strain,
δL/L0, is proportional to the distance above the neutral surface.
More precisely, ∆L/L0 = y/R.



Next, use the symbol e to denote the axial strain ∆L/L0, and use
the symbol f to denote stress, which is force/area. For an elastic
material, f = eE , where E is Young’s modulus. So we have
y/R = ∆L/L0 = e = f /E . So the axial stress (force per unit area)
exerted by the fibers a distance y above the neutral axis is
f = Ey/R.

Now, using the language of calculus, consider an infinitesimal fiber
of area dA a distance y above the neutral surface. Using a pivot
along the neutral axis, the torque (bending moment) exerted by
the longitudinal fiber of area dA equals force times lever arm. The
force is dF = f dA (stress times area) and the lever arm is y . So
the infinitesimal bending moment exerted by this infinitesimal fiber
is

dM = y dF = y f dA = y

(
Ey

R

)
dA =

E

R
y2 dA.



So the bending moment M exerted by a curved beam is

M =

∫
dM =

E

R

∫
y2 dA =

EI

R
(1)

where R is the curved beam’s radius of curvature, and I =
∫
y2 dA

is the “second moment of area” introduced in chapter 6.

Using f = Ey/R to eliminate R, we can also write

f = My/I , (2)

or using c to represent the most extreme value of |y | (for the fibers
farthest from the neutral surface), the maximum bending stress is

fmax = Mc/I . After drawing the moment diagram M(x), you can

use the maximum value of |M(x)| and your knowledge of the beam
cross-section to determine the maximum bending stress fmax,
which can be compared with the allowable stress Fallow for the
material of which the beam is composed.



Since I and c are just geometrical properties of the beam

cross-section, their ratio is given a name: S = I/c is called the

section modulus , where I is second moment of area (w.r.t. the
neutral axis) and c is the distance from the neutral surface to the
top or bottom of the beam (whichever is larger, if the beam is
asymmetric). We can then write the bending stress in the extreme

fibers as fb = M/S . Alternatively, if you are working with

material of a given allowable bending stress Fb and the maximum
(in absolute value) bending moment for your loading conditions is
Mmax, then you need to choose a cross-section for your beam

whose section modulus is larger than Srequired = Mmax/Fb . For

standard beam shapes, values of section modulus S are tabulated.
The dimensions of section modulus are length3, e.g. cubic meters,
cubic centimeters, or cubic inches.



(Need diagram.) Imagine a fiber located a height y above the
neutral surface. At position x along the length of the beam, the
axial (bending) stress in this fiber will be fb = My/I , using
equation (2). Because M(x) varies along the length of the beam,
this bending stress will vary with x :

dfb
dx

=
y

I

dM(x)

dx
=

y

I
V (x)



(Need a nicer diagram.) Now imagine the forces acting on a
rectangular block of beam that extends longitudinally from x to
x + dx , extends vertically from y to c (measured from the neutral
surface, where c is the top surface of the beam), and extends the
entire width b of the beam cross-section. Since stress =
force/area, each force is the integral of stress over the
corresponding area. The horizontal force acting on the left surface
of the block is

∫ c
y fb(x) b dy . The horizontal force acting on the

right surface of the block is
∫ c
y fb(x + dx) b dy .



Along the top surface there is no force, as there is no material
above the top of the beam. But acting horizontally along the
bottom surface of the rectangular block is the shear stress , fv .
The corresponding force is fv b dx . The horizontal forces on these
three surfaces must sum arithmetically to zero:

fv b dx =

∫ c

y
[fb(x + dx)− fb(x)] b dy =

∫ c

y
[
dfb
dx

dx ] b dy

=

∫ c

y
[
y

I
V (x)dx ] b dy .

We can cancel dx , and for the special case of a rectangular
cross-section (so b is independent of y) we can cancel b, replace c
with h/2, and replace I with bh3/12:

fv =
V (x)

I

∫ h/2

y
y dy =

V

I

[
h2

8
− y2

2

]
=

12V

bh3

[
h2

8
− y2

2

]

=
3V

2A

[
1−

(
2y

h

)2
]

where A = bh is the area of the beam cross-section.



The maximum shear stress is 3
2V /A (for a rectangular

cross-section) and occurs at the neutral surface (y = 0) at the
longitudinal position x where the shear force |V (x)| is largest —
which usually occurs at the supports.

To envision shear strain (which by Hooke’s law is proportional to
shear stress), bend a deck of cards into a shape and observe
how each card slides against its neighbors.

In many circumstances, building codes will specify the maximum
allowable deflection of a beam of length L as some small fraction
of the length of the beam: for example, an L/360 deflection limit
would imply that a horizontal beam of length 3.6m can deflect no
more than 1 cm vertically under load. We use the symbol ∆ to
indicate the vertical deflection of the beam. A positive value of ∆
points downward, in the −y direction. We can consider the
deflection ∆(x) as a function of horizontal position x along the
length of the beam, or we can consider the maximum deflection
∆max. We want to be able to evaluate ∆max for a hypothetical
beam under load and impose an allowable deflection criterion, for
example ∆max ≤ L/360.



Solving equation (1) for R, the radius of curvature of a loaded
beam is R = EI/M. The beam is straighter (larger R) when the
elastic modulus E and second moment of area I are larger; the
beam curves more (smaller R) when the bending moment M is
larger. The radius of curvature R of a function y = f (x) is given in
calculus by the formula

1

R
=

y ′′

(1 + (y ′)2)3/2
≈ y ′′.

We know that the second derivative of a function is related to its
curvature: if y ′′ = 0 then the function is a straight line (no
curvature); if y ′′ > 0 then the function has “concave up”
curvature; and if y ′′ < 0 then the function has “concave down”
curvature. In architectural structures, one deals with beams whose
slope is very small: |y ′| � 1, meaning that the slope of the beam
under load is much smaller than one radian. (A radian is 57.3◦,
which would be a very large slope for a deflected beam.) So it is
conventional to use the small-angle (|y ′| � 1) approximation:
y ′′ ≈ 1/R.



In the small-angle approximation, the second derivative ∆′′(x) of
the deflected beam shape ∆(x) obeys the Euler-Bernoulli beam
equation

−∆′′(x) =
1

R
=

M

EI
.

The minus sign is because ∆(x) increases in the −y direction. We
can integrate the bending-moment curve M(x) twice to get the
deflected shape ∆(x) of the beam:

−∆(x) =
1

EI

∫
dx

∫
M(x) dx

Since the moment curve M(x) is usually a quadratic curve for a
beam with a uniform distributed load w and is usually a piecewise
linear curve for a beam with a concentrated load P, it makes sense
that ∆(x) is usually a fourth-order polynomial for a uniformly
loaded beam and is usually a cubic polynomial for a concentrated
load. The most common cases are tabulated in books and online
references.



For example, a simply supported beam has ∆max = 5wL4/(384EI )
for uniform load w or ∆max = PL3/(48EI ) for a concentrated load
P at mid-span. A cantilever has ∆max = wL4/(8EI ) for uniform
load w and ∆max = PL3/(3EI ) for concentrated load P at the free
end. You can look up many more specific cases.

Here’s where the crazy 5/384 comes from: A simply supported
beam of length L and uniform load w has shear curve
V (x) = ( 1

2L− x)w and bending moment curve
M(x) = (Lx − x2)w/2. Integrating twice,

∆(x) = − 1

EI

∫
dx

∫
M(x) dx = − w

2EI

(
Lx3

6
− x4

12
+ C1x + C2

)
The boundary condition ∆(0) = 0 gives C2 = 0 and ∆(L) = 0

gives C1 = −L3/12. So ∆(x) = w
2EI

(
x4

12 −
Lx3

6 + L3x
12

)
. Plugging in

x = L/2 (which is where ∆′(x) = 0) gives ∆max = 5wL4/(384EI ).
To get the two integration constants for a simply supported beam,
use ∆(0) = ∆(L) = 0. For a cantilever whose left end is fixed, the
integration constants would instead be given by ∆(0) = 0 and
∆′(0) = 0.



Beam design criteria usually include the following:

I Axial stress in the extreme fibers of the beam (farthest from
the neutral surface) must be smaller than the allowable
bending stress, Fb, which depends on the material (wood,
steel, etc.) Maximum bending stress happens where bending
moment |M(x)| is largest.

I Shear stress, in both y (“transverse”) and x (“longitudinal”)
directions, must be smaller than the allowable shear stress Fv ,
which also depends on the material (wood, steel, etc.). Shear
stress is maximum where |V (x)| is largest, and is largest near
the neutral surface.

I The above two are “strength” criteria. A third condition is a
“stiffness” criterion: The maximum deflection under load
must satisfy the building code: typically ∆max < L/360,
though in some cases the denominator is smaller, e.g. 120,
180, 240. For a uniform load, the maximum deflection occurs
farthest away from the supports. If deflection is too large,
plaster ceilings develop cracks, and floors feel uncomfortably
bouncy or sloped.



I Onouye/Kane also mention buckling as a beam failure mode.
For a simply supported beam, the top is in compression while
the bottom is in tension; vice-versa for a cantilever. In very
deep beams (i.e. very tall in cross-section), the compression
side can buckle or deflect sideways. Wood framing addresses
this issue with sheathing (a.k.a. furring or strapping) nailed at
close spacing perpendicular to the floor joists and solid
blocking to prevent buckling at the ends. In a very deep
I-beam, the flange on the compression side is susceptible to
buckling.





I The idea of computing centroids of simple and composite
shapes is very, very briefly introduced in O/K ch3 (in the
context of “distributed loads”), and is discussed in much more
detail in O/K ch6 (cross-sectional properties).

I Let’s go through one example using rectangles and triangles.
It will help you in cases when you need to solve for the
“reaction forces” on a beam that carries distributed loads.
(Example coming up next.)



What is Xcentroid for the shaded area?

(A) 0

(B) 3

(C) 6

(D) 9



What are the areas of the three individual polygons?

(A) 36, 16, 16

(B) 36, 16, 12

(C) 36, 16, 8

(D) 36, 16, 6



What are the Ycentroid values of the three individual polygons?

(A) 4, 9, 11

(B) 4, 9, 11.667

(C) 4, 9, 12

(D) 4, 9, 12.333

(E) 4, 9, 12.5

(F) 4, 9, 13

(G) 4, 9, 14



What is Ycentroid for the whole shaded area?

(A)
4 + 9 + 12

3
= 8.33

(B)

(4)(36) + (9)(16) + (12)(6)

36 + 16 + 6
= 6.21

(C)

(4)(36) + (9)(16) + (12)(6)

4 + 9 + 12
= 14.4

(D)

(42)(36) + (92)(16) + (122)(6)

36 + 16 + 6
= 47.2



Last week, you tried one problem similar to this (but using metric
units): Determine the support reactions at A and B.





This one is harder, because the distributed load is non-uniform:
Determine the support reactions at A and B.





(A) (B) (C) (D)

Each shape has the same area: 24 squares. Which shape has the
largest Ix =

∫
y2dA (“second moment of area about the x-axis”),

with y = 0 given by the faint horizontal red line at the center?



(A) (B) (C) (D)

Each shape has the same area: 24 squares. Which shape has the
smallest Ix =

∫
y2dA (“second moment of area about the

x-axis”), with y = 0 given by the faint horizontal red line at the
center?



If you moved the x-axis down by a couple of grid units, what would
happen to Ix =

∫
y2dA for each shape? Would Ix change?

Would Ix change by the same amount for each shape?

(A) yes (B) no

(Think: “parallel-axis theorem.”)



(A) (B) (C) (D)

Given that Ix =
∫
y2dA = 1

12bh
3 for a rectangle centered at y = 0,

let’s use the parallel-axis theorem to calculate Ix for shapes A, B,
C , and D. For definiteness, let each graph-paper box be
1 cm× 1 cm. So the units will be cm4.



Let’s do the two rectangular shapes first, since they’re quick.

Then, the trick for the non-rectangular shapes is to use (from O/K
§6.3) the “parallel-axis theorem:”

Ix =
∑

Ixc +
∑

Ad2
y

where each sum is over the simple shapes that compose the big
shape.

I Ixc is the simple shape’s own Ix value about its own centroid
(which is bh3/12 for a rectangle),

I A is the simple shape’s area, and

I dy is the vertical displacement of the simple shape’s centroid
from y = 0 (which should be the centroid of the big shape).









(A) (B) (C) (D)

Each shape has same area A = 24 cm2, but “second moment of
area” is IA = 1328 cm4, IB = 792 cm4, IC = 72 cm4, ID = 32 cm4.
That’s the motivation for the “I” shape of an I-beam: to get a
large “second moment of area,” I =

∫
y2 dA. The deflection of a

beam under load is inversely proportional to I .





We can use the Method of Sections to study the internal forces
and torques (“moments”) within a beam. Consider this cantilever
beam (whose own weight we neglect here) supporting a
concentrated “load” force P at the far end. The left half is what
holds up the right half. What force and torque (“moment”) does
the left half exert on the right half? Does the answer depend on
where we “section” the beam?



We draw “load diagram” (basically a FBD for the beam), then the
“shear (V) diagram” below that, then the “moment (M) diagram”
below that. Sign conventions: V > 0 when beam LHS section is
pulling up on beam RHS; M > 0 when beam is smiling.

Another way to state the V (x) sign convention: V (x) is the
running sum of all (upward minus downward) forces exerted on the
beam, from the left side up to and including x .



We draw “load diagram” (basically a FBD for the beam), then the
“shear (V) diagram” below that, then the “moment (M) diagram”
below that. Sign conventions: V > 0 when beam LHS section is
pulling up on beam RHS; M > 0 when beam is smiling.



Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.



Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.



Let’s try a mirror image of the same cantilever beam. Sign
conventions: V > 0 when beam LHS section is pulling up on beam
RHS; M > 0 when beam is smiling.



Sign conventions: V > 0 when beam LHS section is pulling up on
beam RHS; M > 0 when beam is smiling.



Sign conventions: V (x) > 0 when beam left of x is pulling up on
beam right of x . M(x) > 0 when beam is smiling.

Transverse shear V (x) is
the running sum of forces
on beam, from 0 . . . x ,
where upward = positive.

Bending moment M(x) is
the torque exerted by each
side of the beam, cut at x ,
on the other side; but
beware of sign convention.

V (x) =
d

dx
M(x)

The V diagram graphs the
slope of the M diagram.



Draw V and M for this “simply supported” beam: V (x) is running
sum (up − down) of forces on beam. M > 0 when beam smiles.



V (x) =
d

dx
M(x)

The shear (V ) diagram
equals the slope of the
moment (M) diagram.

M(x) =

∫
V (x)dx

But be careful about
the M values at the
ends — depends how
the beam is supported.
A free, hinged, or
roller-supported end
has M = 0: support
exerts no torque on
that end. Fixed end of
cantilever has M 6= 0.



Let’s try drawing load, V , and M diagrams for this simply-
supported beam. Pretend the units are meters and kilonewtons
rather than the original drawing’s feet and kilopounds (“kips”).





Shear (V) and moment (M) diagrams:

I First draw a “load diagram,” which is an EFBD that shows all
of the vertical forces acting on the beam.

I The “shear diagram” V (x) graphs the running sum of all
vertical forces (both supports and loads) acting on the beam,
from the left side up to x , where upward = positive,
downward = negative.

I To draw the “moment diagram” M(x), note that V is the
slope of M:

V (x) =
d

dx
M(x)

I The change in M from x1 to x2 is given by

M2 −M1 = (x2 − x1)V average
1→2

I If an end of a beam is unsupported (“free”), is hinge/pin
supported, or is roller supported, then M = 0 at that end.
You can only have M 6= 0 at an end if the support at that end
is capable of exerting a torque on the beam — for example,
the fixed end of a cantilever has M 6= 0.



Let’s try drawing V (x) and M(x) diagrams for this simply
supported beam with uniform distributed load:









Why do we care about these beam diagrams, anyway? Usually the
floor of a structure must carry a specified weight per unit area.
The beams (beams, girders, joists, etc.) must be strong enough to
support this load without failing and must be stiff enough to
support this load without excessive deflection.



Beam criteria:

I Axial stress in the extreme fibers of the beam (farthest from
neutral surface) must be smaller than the allowable bending
stress, Fb, which depends on the material (wood, steel, etc.).

I This happens where M(x) has largest magnitude.

I Shear stress (in both y (“transverse”) and x (“longitudinal”)
must be smaller than the allowable shear stress, Fv , which is
also a property of the material (wood, steel, etc.).

I This happens where V (x) has largest magnitude, and
(surprisingly) is largest near the neutral surface.

I The above two are “strength” criteria. The third one is a
“stiffness” criterion:

I The maximum deflection under load must satisfy the building
code: typically ∆ymax < L/360.

I For a uniform load, this happens farthest away from the
supports. If deflection is too large, plaster ceilings develop
cracks, floors feel uncomfortably bouncy or sloped.

I The book also notes buckling as a beam failure mode.



I Imagine (not so unrealistically) a wooden beam as a bunch of
long parallel fibers glued together.

I The axial stress can’t be so big that individual fibers will snap
like strings, or crush like a cardboard box. Axial stress is
largest where M(x) is largest and at the fibers farthest from
the neutral surface.

I The shear stress can’t be so big that the “glue” fails to
prevent adjacent fibers from sliding parallel to one another.
Shear stress is largest where V (x) is largest and (surprisingly)
is largest near the neutral surface.

I The above two criteria relate to the strength of the material
— its ability to resist irreversible damage. The third criterion
will relate to the stiffness of the beam — its ability to resist
reversible deflection that is uncomfortably large.



I The above two criteria related to the strength of the material
— its ability to resist irreversible damage. The third criterion
relates to the stiffness of the beam — its ability to resist
reversible deflection that is uncomfortably large.

I If a beam deflects too much (bows into a shape), then
plaster ceilings develop cracks, and floors feel uncomfortably
bouncy or sloped. Building codes specify maximum deflection.

I Prof Farley points out that in typical cases, the deflection
criterion turns out to be more strict than the strength criteria.
So in practice, one first designs using the deflection criterion,
then checks whether the strength criteria are satisfied, and
iterates if necessary.

I Therefore, let’s do some geometry and some math to try to
figure out what determines how much a beam deflects into a
curved shape when you put a load on it.



Navier’s assumption: Sections that are originally plane and parallel
remain plane after bending, but converge onto a common center of
curvature. This assumption can be illustrated with a rubber beam.





Let’s see how an initially horizontal beam responds to the bending
moment M(x) by deforming into a curved shape. In this
illustration, top is in tension, as in a cantilever.



Key idea: bending moment M ∝ 1
R , where R is the radius of

curvature of the beam. For constant M, vertical lines converge
toward common center of curvature.

strain =
∆L

L0
=

y

R

where y = 0 is the
neutral surface.

So in this case y > 0 is
in tension and y < 0 is
in compression.



If you think of wood fibers running along the beam’s axis, then the
fibers above the neutral surface (y > 0) are stretched in proportion
to y , and the fibers below the neutral surface (y < 0) are
compressed in proportion to |y |.

strain =
∆L

L
=

y

R



Now remember that ∆L
L is called (axial) strain, and force per unit

area is called stress. For an elastic material, strain (e) ∝ stress (f ).

∆L

L
=

1

E
× Force

Area
=

1

E
× f e =

1

E
× f



In the elastic region, strain (e = ∆L/L) is proportional to stress

(f = F/A). f = Ee . The slope E is Young’s modulus.



Plugging in f = Ee to the bending-beam diagram:

y

R
=

∆L

L
= e =

f

E

we find the force-per-unit area (stress) exerted by the fibers is

f =
Ey

R



By similar triangles, ∆L
y = L0

R ⇒ strain e = ∆L
L0

= y
R

Hooke’s law: f = eE ⇒ f = Ey
R (1)

f = stress = force per unit area. E = Young’s modulus.



Imagine a fiber running along the length of the bent beam. Let the
fiber have cross-section area dA and height y above the neutral
surface. The tension (force) in the fiber is

dF = f dA =
E

R
y dA

Pivoting about the neutral axis, the moment (torque) exerted by
this fiber is (since y is the lever arm from the pivot)

dM = y dF =
E

R
y2 dA

To find the total bending moment exerted by this cross-section of
beam, we add up all of the fibers over the entire cross-section:

M =
E

R

∫
y2 dA =

EI

R
where I =

∫
y2 dA (2)

◦ One factor of y comes from strain ∆L/L0 ∝ y .
◦ The second factor of y is lever arm above the N.A.



So the beam’s radius of curvature is R = E I
M (3) (illustrate).

Combine (1) + (3) ⇒ bending stress f = E y
E I/M =

M y

I
= f

The maximum bending stress is

fmax =
|M|max |y |max

I
=
|M|max

S
= fmax

where S is the “section modulus” S =
I

|y |max

◦ know load & span → find |M|max

◦ know type of material → allowable fmax

Srequired ≥
|M|max

fallowable

tells you how “big” a beam cross-section you need for this load,
span, & material, to meet the maximum-bending-stress criterion,
which is a “strength” criterion (not a “stiffness” criterion).



In calculus, 1
R quantifies the “curvature” of a function Y (x)

curvature =
1

R
=

Y ′′(x)

[1 + Y ′(x)2]3/2
≈ Y ′′(x)

The curvature of a function is closely related to its second
derivative Y ′′(x). If the slope |Y ′(x)| � 1, as is true for beams
used in structures, then 1

R = Y ′′(x).

For clarity, I’ll write Y (x) for the shape of the deflected beam, and
reserve y to denote height above the neutral surface.

Y ′′(x) =
1

R
=

M(x)

E I

slope Y ′(x) =
1

E I

∫
M(x)dx

Y (x) =
1

E I

∫
dx

∫
M(x) dx

deflection under load ∆(x) = −Y (x). This is where you get

∆max = 5wL4

384EI for simply-supported beam with uniform load w , etc.



This Onouye/Kane figure
writes “y” here for
deflection, but I wrote
“Y ” for deflected beam
shape, because we were
already using y for
“distance above the
neutral surface.”

You integrate M(x)/(E I )
twice w.r.t. x to get the
deflected beam shape
Y (x).

The bending moment is
M(x) = E I d2Y /dx2,
where E is Young’s
modulus and I is second
moment of area.



The most common deflection results can be found in tables.



FYI, here’s where that crazy (5wL4)/(384EI ) comes from!

(continued on next page)



Here’s where that crazy (5wL4)/(384EI ) comes from!

The 2 integration constants can be tricky. Simply supported:
∆(0) = ∆(L) = 0. (For cantilever, ∆(0) = ∆′(0) = 0 instead.)



Maximum deflection is one of several beam-design criteria. ∆max

comes from integrating M(x)/(EI ) twice w.r.t. x to get ∆(x).

For uniform load w on simply-supported beam, you get

∆max =
5wL4

384EI

You just look these results up, or use a computer to calculate
them. But I had great fun calculating the 5/384 myself!

Deflection is proportional to load, and inversely proportional to
Young’s modulus and to the second moment of area.

I More load → more deflection

I Stiffer material → less deflection

I Cross-section with larger I =
∫
y2 dA → less deflection

Notice that putting a column in the middle of a long, uniformly
loaded beam reduces ∆max by a factor of 24 = 16. Alternatively,
if you want to span a large, open space without intermediate
columns or bearing walls, you need beams with large I .



Recap: Bending beam into circular arc of radius R gives

e =
∆L

L0
=

y

R
, strain e vs. distance y above the neutral surface.

Hooke’s Law f = E e

gives stress f =
E y

R
Torque exerted by
fibers of beam is

M =

∫
y (f dA) =

y
E y

R
dA =

E

R
y2 dA

M =
E I

R

Eliminate R ⇒

f =
M y

I
=

M

I/y



The bending stress a distance y above the neutral surface is

f =
M y

I

The largest bending stress happens in the fibers farthest above or
below the neutral surface. Call this largest distance ymax ≡ c .

fmax =
Mmax c

I
=

Mmax

(I/c)
=

Mmax

S

The ratio S = I/c is called “section modulus.” The load diagram
gives you Mmax. Each material (wood, steel, etc.) has allowed
bending stress fmax. Then Smin tells you how big a beam you need.



Questions for Prof. Farley!

I How do we explain the variation of shear stress across the
cross-section of a beam — for example: where is shear stress
largest for a simply supported beam with uniform distributed
load, rectangular cross-section?

I Should we add to this course some physics of masonry
structures, e.g. a classic Roman arch?

I For design criteria of a structure (O/K ch1), what is meant by
redundancy and continuity?

I Z.E. question: how to study moments in complex shapes?

I Any others?!





Notice (on next slide):

I For most load/support conditions, bending moment M(x)
varies with x , and bending stress is proportional to bending
moment.

I The shear stress (exerted between parallel fibers) along the
bottom edge of the red rectangle must make up the difference
between the left and right total bending forces.

I The left and right total bending forces depend on how much
area we add up in drawing the red rectangle.

I The total reaches a maximum at the neutral surface, then
decreases, since the direction of the bending stress reverses at
the neutral surface.





If you find this confusing:
(a) You don’t really need to know it for this course. If you’re an
architect, you’ll learn it again when you study structures.
(b) You might look at the explanation I wrote up in the
Onouye/Kane chapter 8 pages of
http://positron.hep.upenn.edu/p8/files/equations.pdf#page=22

http://positron.hep.upenn.edu/p8/files/equations.pdf#page=22


Draw shear (V ) and moment (M) diagrams for this beam! Tricky!
First one needs to solve for the support (“reaction”) forces.

Note: in solving for the support forces, you replace distributed load
w with equivalent point load. But when you draw the load
diagram to find V and M, you need to keep w in its original form.



Remember that V (x) is the running sum, from LHS to x , of
vertical forces acting on the beam, with upward=positive.



Neat trick: M2 −M1 = (V average
1→2 )(x2 − x1)



Draw load, V , and M diagrams for this simply supported beam
with a partial uniform load.







(The next few slides contain beam-design examples, of the sort you
might see in a structures course.)

Example (using metric units!): A cantilever beam has a span of
3.0 m with a single concentrated load of 100 kg at its unsupported
end. If the beam is made of timber having allowable bending stress
Fb = 1.1× 107 N/m2 (was 1600 psi in US units), what minimum
section modulus is required?

What is the smallest “2×” dimensional lumber (width = 1.5 inch
= 0.038 m) whose cross-section satisfies this strength criterion?

Would this beam also satisfy a ∆max < L/240 (maximum
deflection) stiffness criterion? If not, what standard “2×”
cross-section is needed instead?

∆max = PL3/(3EI ) for a cantilever with concentrated load at end.
Use Young’s modulus E = 1.1× 1010 N/m2 for southern pine.





Smin =
|Mmax|
fallowed

=
PL

Fb
=

(980N)(3m)

1.1× 107 N/m2
= 26.7× 10−5 m3

∆allowed =
L

240
=

3.0m

240
= 0.0125 m

∆max =
PL3

3EI
⇒ Imin =

PL3

3E∆allowed
= 64.2× 10−6 m4



I worked out b, h, I , and S = I/c values in metric units for
standard “2×” dimensional lumber.

b b h h I = bh3/12 S = bh2/6
2× 4 1.5 in .038m 3.5 in .089m 2.23× 10−6 m4 5.02× 10−5 m3

2× 6 1.5 in .038m 5.5 in .140m 8.66× 10−6 m4 12.4× 10−5 m3

2× 8 1.5 in .038m 7.5 in .191m 21.9× 10−6 m4 23.0× 10−5 m3

2× 10 1.5 in .038m 9.5 in .241m 44.6× 10−6 m4 37.0× 10−5 m3

2× 12 1.5 in .038m 11.5 in .292m 79.1× 10−6 m4 54.2× 10−5 m3

The numbers are nicer if you use centimeters instead of meters,
but then you have the added hassle of remembering to convert
back to meters in calculations.

b b h h I = bh3/12 S = bh2/6
2× 4 1.5 in 3.8 cm 3.5 in 8.9 cm 223 cm4 50.2 cm3

2× 6 1.5 in 3.8 cm 5.5 in 14.0 cm 866 cm4 124 cm3

2× 8 1.5 in 3.8 cm 7.5 in 19.1 cm 2195 cm4 230 cm3

2× 10 1.5 in 3.8 cm 9.5 in 24.1 cm 4461 cm4 370 cm3

2× 12 1.5 in 3.8 cm 11.5 in 29.2 cm 7913 cm4 542 cm3



Minor variation on same problem: A cantilever beam has a span of
3.0 m with a uniform distributed load of 33.3 kg/m along its entire
length. If we use timber with allowable bending stress
Fb = 1.1× 107 N/m2, what minimum section modulus is required?

What is the smallest “2×” dimensional lumber (width = 1.5 inch
= 0.038 m) whose cross-section satisfies this strength criterion?

Would this beam also satisfy a ∆max < L/240 (maximum
deflection) stiffness criterion? If not, what standard “2×”
cross-section is needed instead?

∆max = wL4/(8EI ) for a cantilever with uniform load. Use
Young’s modulus E = 1.1× 1010 N/m2 for southern pine.





Smin =
|Mmax|
fallowed

=
wL2/2

Fb
=

(326N/m)(3m)2/2

1.1× 107 N/m2
= 13.3× 10−5 m3

∆allowed =
L

240
=

3.0m

240
= 0.0125 m

∆max =
wL4

8EI
⇒ Imin =

wL4

8E∆allowed
= 24.0× 10−6 m4



(Here’s a homework problem from ARCH 435.)

Actually, Home Depot’s 2× 10 really is 9.5 inches deep, not 9.25
inches, and 2× 12 really is 11.5 inches deep.



A timber floor system uses joists made of “2× 10” dimensional
lumber. Each joist spans a length of 4.27 m (simply supported).
The floor carries a load of 2400 N/m2. At what spacing should the
joists be placed, in order not to exceed allowable bending stress
Fb = 10000 kN/m2 (1.0× 107 N/m2)?

(We should get an answer around 24 inches = 0.61 meters.)








