
Derivation of the “mass law” of sound attenuation
at a single, uniform wall or window.

The problem we’re really interested in is what happens to a sound wave when it
encounters a single window or wall of uniform mass per unit area. In class, we
modeled this problem by putting a mass onto the middle of the wave machine. The
result was that a small part of the wave was transmitted to the other side of the mass,
while most of the wave was reflected back by the mass. The transmission was smaller
if we increased the mass, and it was smaller for larger frequencies. Low frequencies
were very difficult to stop.

Here, I’ll do the math for the analogous case of putting a mass onto the middle of a
taut string (like a guitar string), and calculating how much of an incoming wave is
transmitted and how much is reflected back.

I’ll put the mass at x = 0. The incoming wave comes from x < 0 and is traveling
to the right. For x > 0, we have only the transmitted wave, which travels to the
right. For x < 0 we have both the incoming wave (which travels to the right) and the
reflected wave (which travels to the left).

Remember that a single-frequency wave traveling to the right is described by the
wavefunction

ψ(x, t) = A cos(ωt− kx+ φ)

and a single-frequency wave traveling to the left is described by the wavefunction

ψ(x, t) = A cos(ωt+ kx+ φ)

For the incoming wave, we can choose the amplitude to be A = 1 (so that the
amplitudes we report are just fractions of the incoming wave’s amplitude) and we
can choose the phase to be φ = 0 (which just fixes the time at which we start the
clock). For the reflected and transmitted waves, the amplitude and phase will be
determined by the physics at the boundary. So we can write the wavefunctions for
the left (x < 0) and right (x > 0) sides of the mass like this:

ψL(x, t) = cos(ωt− kx) +R cos(ωt+ kx+ φR)

ψR(x, t) = T cos(ωt− kx+ φT )

But we will be stuck with a lot of messy trigonometry if we write the phases φR
and φT of the reflected and transmitted waves in that way. The math is much more
reasonable if instead of using a cosine function with a phase, we instead allow for a
linear combination of cosine and sine functions. This has exactly the same effect as
allowing for an arbitrary phase φ. So we’ll write the wavefunctions like this:

ψL(x, t) = cos(ωt− kx) +R1 cos(ωt+ kx) +R2 sin(ωt+ kx)
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ψR(x, t) = T1 cos(ωt− kx) + T2 sin(ωt− kx)

Now we need to work out the boundary conditions at the mass. The first boundary
condition is that the string is continuous at x = 0. We assume that the mass is very
thin, so the height of the string just to the left of x = 0 must be the same as the
height of the string just to the right of x = 0. In math, this condition is

ψL(0, t) = ψR(0, t)

Plugging this in, we get

cos(ωt) +R1 cos(ωt) +R2 sin(ωt) = T1 cos(ωt) + T2 sin(ωt)

This equation must be true at all possible values of ωt. So we evaluate it first for
ωt = 0, when cos(ωt) = 1 and sin(ωt) = 0, and then for ωt = π

2
, when cos(ωt) = 0

and sin(ωt) = 1. This gives us two equations:

1 +R1 = T1 and R2 = T2

Substituting these two equations into ψL lets us eliminate R1 and R2, so we can write

ψL(x, t) = cos(ωt− kx) + (T1 − 1) cos(ωt+ kx) + T2 sin(ωt+ kx)

ψR(x, t) = T1 cos(ωt− kx) + T2 sin(ωt− kx)

The second boundary condition is basically F = ma for the mass. As the mass wiggles
up and down, it is being accelerated by the two sides of the string. If the string is
perfectly horizontal, then the tension in the string is perfectly horizontal, and the
mass is not accelerated. (We’re only considering vertical motion of the string—as
we saw in class on the transverse wave machine.) If the string has a slope, then
the tension has a vertical component. If the left and right sides of the string have
different slopes, then the mass feels a net force in proportion to this difference in
slopes. Writing F = ma for the mass in terms of the string tension τ , we have

(ψ′
R(0, t)− ψ′

L(0, t)) τ = mψ̈(0, t)

For the acceleration, I wrote ψ̈(0, t) without distinguishing left or right, because we
know ψL(0, t) = ψR(0, t), so their time-derivatives must also be equal. The second
derivative of the wavefunction (we’ll use ψR, but for x = 0 we could choose either ψR
or ψL) with respect to time is

ψ̈R(x, t) = −ω2T1 cos(ωt− kx)− ω2T2 sin(ωt− kx)

The slopes of the left and right sides of the string are

ψ′
R(x, t) = kT1 sin(ωt− kx)− kT2 cos(ωt− kx)
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ψ′
L(x, t) = k sin(ωt− kx) + k(T1 − 1) sin(ωt+ kx) + kT2 cos(ωt+ kx)

Plugging these in for x = 0, we get

(kT1 sin(ωt)− kT2 cos(ωt))− (k sin(ωt) + k(T1 − 1) sin(ωt) + kT2 cos(ωt))

= (m/τ)
(
−ω2T1 cos(ωt)− ω2T2 sin(ωt)

)
Making this be true for all ωt gives two equations:

kT1 − k − k(T1 − 1) =
(
−ω2m/τ

)
T2

−kT2 − kT2 =
(
−ω2m/τ

)
T1

which simplify to

1− T1 =
ω2m

kτ
T2 and T2 =

ω2m

2kτ
T1

or better yet (defining α = ω2m
2kτ

)

1− T1 = 2αT2 and T2 = αT1

We can solve these two equations in two unknowns to get

T1 =
1

1 + α2
and T2 =

α

1 + α2

We get the transmitted amplitude (as a fraction of the incoming amplitude) by com-
bining the cosine-like and sine-like components, like this:

Tamplitude =
√
T 2
1 + T 2

2 =
1√

1 + α2

The fraction of intensity transmitted (i.e. the intensity for x > 0 divided by the
intensity of the incoming wave) is the square of the fraction of transmitted amplitude:

Tintensity =
1

1 + α2

Now we can put our expression for α into a more useful form:

α =
ω2m

kτ
=

(2πf)2m

(2πf/c)(ρc2)
=
πmf

cρ

using ω = 2πf , k = 2πf/c, c =
√
τ/ρ (so τ = ρc2), where ρ is the mass per unit

length of the string, f is the frequency, and c is the speed of wave propagation on the
string. So for transmitted intensity, we get

Tintensity =
1

1 +
(
πmf
cρ

)2
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For all but the lowest frequencies, α� 1, so

Tintensity ≈
(

cρ

πmf

)2

To apply this to sound waves hitting a wall or window, we replace c with the speed
of sound, ρ with the density of air (mass per unit volume), and m with the mass per
unit area of the wall or window. I’ll use the symbol µ instead of m to remind us that
it is mass per unit area. We get

Tintensity =
1

1 +
(
πµf
cρ

)2 ≈
(
csound ρair
π µwall f

)2

This is sometimes called the “mass law” of sound reduction. (A 6 dB drop in sound
level per doubling of mass or per doubling of frequency.) It applies for a single wall
of uniform mass per unit area. By treating the wall as a single mass, I am basically
assuming that the wall or window is perfectly rigid (doesn’t change shape) and moves
back and forth in response to the sound wave, like the mass we hung on the wave
machine. A more complicated derivation would treat the wall like a short segment
of much heavier string—like taking a thin guitar wire and splicing a small section of
thick guitar wire into the middle. The two derivations give the exact same result as
long as the wavelength of sound (in the wall/window material) is much longer than
the thickness of the wall/window. The speed of sound in most building materials
is about 10× as large as in air, so the wavelengths are larger by the same factor,
which makes it a reasonable approximation for ordinary sound frequencies that the
thickness of a window or a wall is much smaller than a wavelength.

You get an enormously larger reduction (except at resonant frequencies, where an odd
number of half-wavelengths just fit between the two windows), with a given amount
of material, by making two separated (and mechanically decoupled) walls or windows.
The larger the separation, the better the attenuation for the lowest-frequency sounds.
You can derive the sound transmission for a double window using similar (but much
more messy) math. That result, in case you’re curious, is

Tintensity =
1

1 + 4α2(C2 − 2αSC + α2S2)

where C = cos(2π∆x/λ) = cos(2πf∆x/csound), S = sin(2π∆x/λ) = sin(2πf∆x/csound),
∆x is the spacing between the two windows or walls, and λ is the wavelength in air.
There is a graph of this function in the class notes for January 23.
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