
Physics 9, Fall 2018, Practice Exam. Name:

This open-book take-home exam is 10% of your course grade. (The in-class final exam will be 25%
of your course grade. For the in-class exam, you can bring one sheet of handwritten notes and a
calculator. You will turn in your sheet of notes [if any] with your final exam.) You should complete
this exam on your own, without working with other people. It is fine to discuss general
topics from the course with your classmates, but it is not OK to share your solutions to these specific
problems. Feel free to approximate g = 10 m/s2 if you wish. The in-class exam will be shorter than
this practice exam and will consist mainly of problems very similar to problems you have already
solved in the weekly homework; the topics covered will be very similar to this practice exam.

Due in class on Monday, December 10, 2018

Please show your work on these sheets. Use blank sheets at back if needed.

1. (7%) One end of a horizontal string is attached to a small-amplitude mechanical 75.0 Hz oscillator.
The string’s mass per unit length is 5.3 ⇥ 10�4 kg/m. The string passes over a pulley, a distance
L = 1.75 m away, and weights are hung from this end. Assume the string at the oscillator is a node,
which is nearly true, and that the string at the pulley is also a node.

(a) Sketch the shape of the string for the fundamental (lowest possible frequency) standing-wave
mode of vibration of this string. In this case, how many wavelengths fit on the string?

(Problem continues on next page.)
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(b) What mass m must be hung from the right end of the string so that the string tension is what
is needed to produce the standing wave that you drew in part (a) [at the given 75 Hz oscillation
frequency]?

(c) Sketch the shape of the string for the second harmonic (next possible frequency above the fun-
damental) mode of vibration of this string. In this case, how many wavelengths fit on the string?

(d) What mass m must be hung from the right end of the string to produce the standing wave that
you drew in part (c)? (Tricky: The 75.0 Hz oscillator frequency is fixed, but you are changing the
tension so that the mode that you drew in (c) has a frequency of 75.0 Hz.)
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2. (7%) An unfingered guitar string is 0.63 m long and is tuned to play B (247 Hz) below middle C.

(a) How far from the far end of this string must your finger be placed (creating a node) to play E
(330 Hz) above middle C? (In other words, what is the length of the portion of the string that you
are allowing to vibrate at 330 Hz?)

(b) What is the wavelength on the string of this 330 Hz wave?

(c) What are the frequency and wavelength of the sound wave produced in room-temperature air
(vsound = 343 m/s) by this fingered guitar string?
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3. (7%) At a rock concert, a dB meter (technically a “sound level meter”) registered 110 dB when
placed 3.5 m in front of a loudspeaker on stage.

(a) What was the power output of the speaker, assuming uniform spherical spreading of the sound
and neglecting absorption in the air?

(b) How far away from the speaker would the sound level be 75 dB (assuming uniform spherical
spreading of the sound waves, with no reflections, and neglecting absorption in the air)?
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4. (7%) Busy street tra�c has a typical intensity of 3.1 ⇥ 10�5 W/m2.

(a) What is the intensity level of this street noise, in dB? (As a reference level, the threshold of
human hearing is 10�12 W/m2.)

(b) Suppose that the window separating this busy street from your study has a transmission loss
of 30 dB. With the window closed, and with no other noise source in your room, what is the intensity
level (in dB) in your study?

(c) What is the intensity (in W/m2) in your study due to the street noise (under the same conditions
as part (b))?

phys008/pexam.tex page 5 of 15 2018-12-03 10:39



5. (7%) An aquarium filled with water has flat glass sides whose index of refraction is 1.50. A
beam of light from outside the aquarium strikes the glass at a ✓i = 35.0� angle to the perpendicular.

(a) What is the angle (w.r.t. perpendicular) of this light ray when it enters the glass?

(b) What is the angle (w.r.t. perpendicular) of this light ray when it then enters the water (whose
index of refraction is 1.33)?

(c) What would be the refracted angle (w.r.t. perpendicular) if the ray entered the water directly
(i.e. if the glass were absent)?
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6. (8%) Use two techniques, (a) the mirror/lens equation, and (b) a ray diagram, to show that the
image in a concave (converging) mirror [the type of mirror used for shaving or for applying makeup]
is inverted (upside-down) if the object is beyond half of the radius of curvature (do > R/2), and is
upright (not inverted) if the object is closer than half of the radius of curvature (do < R/2).
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7. (7%) A hydraulic press for compacting powdered samples1 has a large cylinder which is
D = 12.0 cm in diameter, and a small cylinder with a diameter of d = 1.5 cm. A lever is attached
to the small cylinder as shown. The sample, which is placed on the large cylinder, has an area of
3.0 cm2. Your hand is applying a downward force Fhandle = 360 N to the end of the lever.

(a) Find the force exerted by the large cylinder on the sample. [Hint, in case you were not in Physics
8: the Fhandle = 360 N force at the end of the lever causes a 2Fhandle = 720 N downward force to be
applied to the small cylinder, as a result of the torque and the 2:1 lever-arm ratio.]

(b) Find the pressure exerted on the sample (initially, while the sample’s area is still 3.0 cm2, which
probably is no longer true once the sample has been squished).

1Or for compacting folded paper! https://youtu.be/KuG_CeEZV6w
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8. (7%) A crane lifts (slowly, and at constant velocity) the 23,000 kg steel (density 7800 kg/m3) hull
of a sunken ship out of sea water (density 1025 kg/m3). Assume that the damaged hull is no longer
water-tight — e↵ectively it is just a steel brick. Determine the tension in the crane’s cable

(a) when the hull is fully submerged in the water, and

(b) when the hull is completely out of the water.
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9. (7%) Water at a gauge pressure of Pstreet = 4.7 atm at street level flows into an o�ce building
at a speed of 0.62 m/s through a pipe 6.0 cm in diameter. The pipe tapers down to 2.54 cm in
diameter by the top floor, h = 23 m above, where the faucet has been left open.

(a) Using the continuity equation, calculate the flow velocity in the pipe on the top floor. (Assume
steady flow and no pipe junctions.)

(b) Using Bernoulli’s equation, calculate the gauge pressure in the pipe on the top floor. (This is
within the pipe, before the faucet, so the water need not be at atmospheric pressure.)

phys008/pexam.tex page 10 of 15 2018-12-03 10:39



10. (7%) (a) You buy an “airtight” bag of potato chips packaged at sea level, and take the chips
on an airplane flight. When you take the potato chips out of the carry-on bag, you notice it has
noticeably “pu↵ed up.” Airplane cabins are typically pressurized at 0.78 atm, and assuming the
temperature inside an airplane is about the same as inside a potato chip factory, by what factor (in
volume) has the bag “pu↵ed up” in comparison to when it was packaged? To be specific, assume
that the volume of the bag when sealed in the factory was 1.00 liter. What is its volume at cruising
altitude inside the pressurized airplane cabin?

(b) During the flight, you finish drinking a 1.00 liter bottle of water, and you screw the cap tightly
onto the bottle at cruising altitude. During landing, the “empty” (except for air) bottle collapses to
a smaller volume. Assuming that the bottle’s wall is flexible so that the air pressure inside the bottle
equals the air pressure outside the bottle, what is the volume of the crushed bottle once the plane
lands?
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11. (7%) The pendulum in a grandfather clock is made of stainless steel (↵ = 12 ⇥ 10�6/�C) and
keeps perfect time at 20�C. How much time is gained or lost in a year if the clock is kept at 30�C?
Assume the frequency dependence on length for a simple pendulum applies: T = 2⇡

p
L/g. (Be sure

to convince me that you got the sign correct — be very explicit about what “gained or lost time”
means to you.)
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12. (7%) Two rooms, each a cube 4.5 m on a side, are separated by a concrete wall of thickness
11.0 cm. (The thermal conductivity of concrete is k = 0.84 J/(s · m · �C).) Because of a number of
100 W incandescent light bulbs in the first room, the air in the first room is at 25�C, while the air in
the second room is somehow kept at 15�C (perhaps by a window open to 15�C outdoor air).

(a) How many 100 W incandescent light bulbs are needed in the first room to maintain the temper-
ature di↵erence across the wall? (Take the problem at face value and don’t worry about what is
happening at the other 5 walls of the first room — maybe the other 5 walls are very well insulated.
Just calculate the heat per unit time conducted through the concrete wall due to the temperature
di↵erence between the two rooms, and assume that that heat must be supplied by the light bulbs.)

(b) What is the “R value” of this concrete wall? Use SI metric units. If you wanted to convert
this into US customary units, you would use 1 �C · m2/W ⇡ 5.7 �F · ft2 · h/Btu. So in US customary
units the R-value would be about 6⇥ as large.

(c) Go ahead and convert your R-value from part (b) into an R-value in US customary units.
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13. (7%) A ground-source heat pump is used to supply 40�C hot water to an under-floor heating
system that keeps your house warm in the winter.

(a) How much work (e.g. supplied by the electric mains) must be done on the heat pump to deliver
4000 J of heat into the house if the heat pump’s COP is 4.0 (which is pretty realistic for a ground-
source heat pump)?

(b) Redo the above calculation using the COP of an ideal (Carnot) heat pump, assuming an un-
derground (“cold”) input temperature of 10�C and an indoor (“hot”) output temperature of 40�C.
(We have to make the “hot” temperature of the heat pump quite a bit hotter than the desired air
temperature of your house. 40�C is a plausible number for an under-floor system.) Remember that
the (ideal, best theoretically possible) Carnot heat pump has a COP equal to TH/(TH � TL), with
temperatures measured in kelvin. You can see that a realistic heat pump is quite far from the Carnot
ideal, but it is still worth bearing in mind that in general a heat pump’s COP deteriorates when the
temperature di↵erence TH � TL becomes too large.

(c) In US customary units, one measures the removed heat in Btu = 1055 J but measures the electrical
work in watt-hours = 3600 J. (Yuck!) So in the US, heat pumps, air conditioners, and refrigerators
specify “SEER” instead of COP. A COP of 1.0 corresponds to a SEER of 3.4. What would be the
corresponding SEER values for the COP values used in parts (a) and (b)?
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14. (8%) For the circuit shown and labeled below:

(a) Use the “junction rule” to write a relationship between I1, I2, and I3.

(b) Write down (but don’t solve!) the three separate equations given by the “loop rule.” One of these
three equations will be redundant, in that it is just what you would get by adding or subtracting the
two other equations from one another.
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In[12]:= Off[Reduce::ratnz];

Problem 1

(a) One-half wavelength fits on the string in the fundamental mode.

In[5]:= Plot[{Sin[x], -Sin[x]}, {x, 0, Pi}]

Out[5]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

(b) The necessary mass is m = 3.73 kilograms.
(c) For the second harmonic, one full wavelength fits on the string.

In[25]:= Plot[{Sin[x], -Sin[x]}, {x, 0, 2 Pi}]

Out[25]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

(d) To get double the wavelength at the same frequency, we reduce the wave speed by a factor of 2, 
which implies reducing the tension by a factor of 4, so the new block to suspend from the string must 
have mass m=0.93 kilogram.

In[161]:= ClearAll["Global`*"];
meter = Quantity["meter"];
second = Quantity["second"];
newton = Quantity["newton"];
kilogram = Quantity["kilogram"];
soln = ToRulesReduce

v_wave ⩵ Sqrt[tension / mass_per_unit_length],
length ⩵ 1.75 meter,

,



In[161]:=

mass_per_unit_length ⩵ mass / length,
λ0 ⩵ 2 length,
v_wave ⩵ λ0 f0,
mass / length ⩵ 5.3 × 10-4 kilogram / meter,
f0 ⩵ 75.0 / second,
g ⩵ 9.8 newton / kilogram,
m g ⩵ tension



Out[166]= λ0 → 3.5 m , v_wave → 262.5 m/s , tension → 36.5203 N ,

mass_per_unit_length → 0.00053 kg/m , mass → 0.0009275 kg ,

m → 3.72656 kg , length → 1.75 m , g → 9.8 m/s2 , f0 → 75. per second 

In[167]:= (m / 4 ) /. soln

Out[167]= 0.931641 kg

Problem 2

(a) The wave speed doesn’t change, but the length of the string changes, and the fundamental mode 
has a wavelength equal to twice the length (or effective length) of the string.  My finger must be placed 
0.472 meter from the far end of the string (so my finger is 0.158 meter from the near end).
(b) At 330 Hz, the wavelength on the string is 0.943 meter.
(c) The frequency in air is the same as the frequency on the guitar string: 330 Hz.  The wavelength in air 
is 1.04 meters, given by v(sound) = lambda*f.

In[38]:= ClearAll["Global`*"];
meter = Quantity["meter"];
second = Quantity["second"];
hertz = 1 / second;
soln = ToRules[Reduce[{

vwave ⩵ λ0 f0,
vwave ⩵ λ1 f1,
λ0 ⩵ 2 L0,
λ1 ⩵ 2 L1,
L0 ⩵ 0.63 meter,
f0 ⩵ 247 hertz,
f1 ⩵ 330 hertz,
ΔL ⩵ L0 - L1

}]]

Out[42]= λ1 → 0.943091 m , λ0 → 1.26 m , ΔL → 0.158455 m , vwave → 311.22 m/s ,

L1 → 0.471545 m , L0 → 0.63 m , f1 → 330. per second , f0 → 247. per second 

In[37]:= soln1 = ToRules[Reduce[{
vsound ⩵ 343.0 meter / second,

,
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In[37]:=

vsound ⩵ λ f,
f ⩵ 330 hertz

}]]

Out[37]= λ → 1.03939 m , vsound → 343. m/s , f → 330. per second 

Problem 3

(a) Total power emitted by loudspeaker is 15.4 watts.
(b) For 75dB sound level, sit a distance 197 meters from the loudspeaker.

In[168]:= ClearAll["Global`*"];
meter = Quantity["meter"];
watt = Quantity["watt"];
soln = ToRulesReduce

decibelsNear ⩵ 110.0,
referenceIntensity ⩵ 10-12 watt  meter2,

intensityNear ⩵ referenceIntensity × 100.1×decibelsNear,
intensityNear ⩵ speakerPower  4 π radiusNear2,

radiusNear ⩵ 3.5 meter,
decibelsFar ⩵ 75.0,
intensityFar ⩵ referenceIntensity × 100.1×decibelsFar,
intensityFar ⩵ speakerPower  4 π radiusFar2,

radiusFar > 0


Out[171]= radiusFar → 196.819 m , speakerPower → 15.3938 W ,

referenceIntensity → 1. × 10-12 kg/s3 , radiusNear → 3.5 m , intensityNear → 0.1 kg/s3 ,

intensityFar → 0.0000316228 kg/s3 , decibelsNear → 110., decibelsFar → 75.

Problem 4

(a) The intensity level of the street noise is 75dB.
(b) With the 30dB window closed, the intensity level indoors is 45dB.
(c) The intensity indoors is 3.1 × 10-8 W/m2

In[172]:= ClearAll["Global`*"];
watt = Quantity["watt"];
meter = Quantity["meter"];
soln = ToRulesReduce

referenceIntensity ⩵ 10-12 watt  meter2,

intensityOutside ⩵ 3.1 × 10-5 watt  meter2,

decibelsOutside ⩵ 10 Log10[intensityOutside / referenceIntensity],
decibelsTL ⩵ 30.0,

,
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In[172]:=

decibelsInside ⩵ decibelsOutside - decibelsTL,
intensityInside ⩵ referenceIntensity × 100.1×decibelsInside



Out[175]= referenceIntensity → 1. × 10-12 kg/s3 ,

intensityOutside → 0.000031 kg/s3 , intensityInside → 3.1 × 10-8 kg/s3 ,

decibelsTL → 30., decibelsOutside → 74.9136, decibelsInside → 44.9136

Problem 5

(a) The transmitted angle into the glass is 22.48 degrees.
(b) The transmitted angle into the water is 25.55 degrees.
(c) The transmitted angle into the water is still 25.55 degrees.

In[89]:= ClearAll["Global`*"];
soln = ToRules[Reduce[{

nair Sin[θair Degree] ⩵ nglass Sin[θglass Degree],
nair ⩵ 1.0,
nglass ⩵ 1.50,
θair ⩵ 35.0,
nglass Sin[θglass Degree] ⩵ nwater Sin[θwater Degree],
nwater ⩵ 1.33,
0 < θglass < 90,
0 < θwater < 90

}, {θglass}]]

Out[90]= {nair → 1., nglass → 1.5, nwater → 1.33, θair → 35., θwater → 25.5476, θglass → 22.4814}

Problem 6

(a) The focal length for a converging mirror is f = +R/2.  Plugging into the lens/mirror equation, the 
image height is hi = (ho R/2) / (R/2 - do).  The numerator is always positive.  If do > R/2 then the denomi-
nator is negative, and the image height is negative: inverted.  If do < R/2 then the denominator is posi-
tive, and the image height is positive: upright.
(b) Draw diagram on exam PDF.
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In[113]:= ClearAll["Global`*"];
soln = Reduce[{

1 / f ⩵ 1 / do + 1 / di,
hi / ho ⩵ -di / do,
f ⩵ +r / 2,
r > 0, do > 0, ho > 0

}]

Out[114]= r > 0 && 0 < do <
r

2
&& ho > 0 || do >

r

2
&& ho > 0 &&

hi ⩵ -
ho r

2 do - r
2

&& f ⩵

r

2
&& di ⩵

do f

do - f

Problem 7

(a) The force exerted by the large cylinder on the sample is 46.1 kN, or 46.1×103 N.
(b) The pressure exerted by the large cylinder on the sample is 1.54×108 Pa, or 154 MPa.

In[140]:= ClearAll["Global`*"];
meter = Quantity["meter"];
cm = 0.01 meter;
newton = Quantity["newton"];
soln = ToRulesReduce

pressure ⩵ forceWide / areaWide,
pressure ⩵ forceNarrow / areaNarrow,
dNarrow ⩵ 1.5 cm,
dWide ⩵ 12.0 cm,
areaNarrow ⩵ Pi (dNarrow / 2)2,
areaWide ⩵ Pi (dWide / 2)2,
fHandle ⩵ 360.0 newton,
forceNarrow ⩵ 2 fHandle,
pressureSample ⩵ forceWide / areaSample,
areaSample ⩵ 3.0 cm2



Out[144]= pressureSample → 1.536 × 108 Pa , pressure → 4.07437 × 106 Pa , forceWide → 46080. N ,

forceNarrow → 720. N , fHandle → 360. N , dWide → 0.12 m , dNarrow → 0.015 m ,

areaWide → 0.0113097 m2 , areaSample → 0.0003 m2 , areaNarrow → 0.000176715 m2 

Problem 8

(a) When the hull is fully submerged, the tension in the cable is 196kN = 196×103N = 1.96×105N.
(b) When the hull is completely out of the water, the tension in the cable is 225kN = 2.254×105N.

In[150]:= ClearAll["Global`*"];
kilogram = Quantity[1.0, "kilogram"];
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In[150]:=

newton = Quantity[1.0, "newton"];
meter = Quantity[1.0, "meter"];
soln = ToRulesReduce

hullMass ⩵ 23 000 kilogram,
steelDensity ⩵ 7800 kilogram  meter3,

seaWaterDensity ⩵ 1025 kilogram  meter3,

g ⩵ 9.8 newton / kilogram,
buoyantForce ⩵ g × hullVolume × seaWaterDensity,
hullMass ⩵ hullVolume × steelDensity,
submergedTension + buoyantForce ⩵ hullMass × g,
nonSubmergedTension ⩵ hullMass × g



Out[154]= submergedTension → 195 780. kgm/s2 ,

steelDensity → 7800. kg/m3 , seaWaterDensity → 1025. kg/m3 ,

nonSubmergedTension → 225400. kgm/s2 , hullVolume → 2.94872 m3 ,

hullMass → 23000. kg , g → 9.8 m/s2 , buoyantForce → 29619.9 kg m/s2 

Problem 9

(a) Using continuity equation, flow speed at top floor is 3.46 m/s.
(b) Gauge pressure at top floor is 245kPa = 2.42atm.

In[199]:= ClearAll["Global`*"];
pascal = Quantity[1.0, "pascal"];
atm = 101325 pascal;
meter = Quantity[1.0, "meter"];
second = Quantity[1.0, "second"];
kilogram = Quantity[1.0, "kilogram"];
cm = 0.01 meter;
soln = ToRulesReduce

pstreet ⩵ 4.7 atm,
vstreet ⩵ 0.62 meter / second,
dstreet ⩵ 6.0 cm,
astreet ⩵ π (dstreet / 2)2,
dtop ⩵ 2.54 cm,
atop ⩵ π (dtop / 2)2,
vtop × atop ⩵ vstreet × astreet,
ptop + (1 / 2) ρwater vtop2 + ρwater g htop ⩵

pstreet + (1 / 2) ρwater vstreet^2 + ρwater g hstreet,
g ⩵ 9.8 meter  second2,

hstreet ⩵ 0,
,
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In[199]:=

htop ⩵ 23 meter,
ρwater ⩵ 1000 kilogram  meter3,

atmtop ⩵ ptop / atm


Out[206]= ρwater → 1000. kg/m3 , vtop → 3.45961 m/s , vstreet → 0.62 m/s , ptop → 245035. Pa ,

pstreet → 476228. Pa , htop → 23. m , hstreet → 0 m , g → 9.8 m/s2 , dtop → 0.0254 m ,

dstreet → 0.06 m , atop → 0.000506707 m2 , astreet → 0.00282743 m2 , atmtop → 2.41831

Problem 10

(a) Bag volume at cruising altitude will be 1.28 liter.
(b) Volume of empty water bottle on landing will be 0.78 liter.

In[244]:= ClearAll["Global`*"];
atm = Quantity[101325.0, "pascal"];
liter = Quantity[1.0, "liter"];
soln = ToRules[Reduce[{

pground ⩵ 1.0 atm,
pcabin ⩵ 0.78 atm,
vground ⩵ 1.00 liter,
pground × vground ⩵ pcabin × vcabin

}]]

UnitConvert[vcabin, "liter"] /. soln

Out[247]= vground → 0.001 m3 , vcabin → 0.00128205 m3 ,

pground → 101325. kg/(ms2) , pcabin → 79033.5 kg/(ms2) 

Out[248]= 1.28205 L

In[249]:= soln = ToRules[Reduce[{
pground ⩵ 1.0 atm,
pcabin ⩵ 0.78 atm,
vcabin ⩵ 1.00 liter,
pground × vground ⩵ pcabin × vcabin

}]]

UnitConvert[vground, "liter"] /. soln

Out[249]= vground → 0.00078 m3 , vcabin → 0.001 m3 ,

pground → 101325. kg/(ms2) , pcabin → 79033.5 kg/(ms2) 

Out[250]= 0.78 L
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Problem 11

At the end of a year, the clock will be about 32 minutes slow, i.e. it will read a time that is 32 minutes 
earlier than a clock that keeps perfect time.

In[279]:= ClearAll["Global`*"];
celsius = Quantity[1.0, "celsius"];
meter = Quantity[1.0, "meter"];
second = Quantity[1.0, "second"];
soln = ToRulesReduce

period20 ⩵ 2 π Sqrt[L20 / g],
period30 ⩵ 2 π Sqrt[L30 / g],
α ⩵ 12 × 10-6  celsius,

T30 ⩵ 30 celsius,
T20 ⩵ 20 celsius,
ΔT ⩵ T30 - T20,
L30 ⩵ L20 (1 + α ΔT),
secondsLost ⩵ 365 × 24 × 3600 × (period30 / period20 - 1),
minutesLost ⩵ secondsLost / 60,
g ⩵ 9.8 meter  second2,

L20 ⩵ 1.0 meter


Out[283]= ΔT → 10. K , α → 0.000012/K , T30 → 30. K , T20 → 20. K ,

period30 → 2.00721 s , period20 → 2.00709 s , L30 → 1.00012 m ,

L20 → 1. m , g → 9.8 m/s2 , secondsLost → 1892.1, minutesLost → 31.5351

Problem 12

(a) We need 15.46 light bulbs, so round up to 16.
(b) R value is 0.131 °C×m2/ W.
(c) In US customary units, R value is 0.75 °F× ft2×h/Btu.  That’s a pretty poor R-value, i.e. it is smaller 
than “R-1.”

In[309]:= ClearAll["Global`*"];
second = Quantity[1.0, "second"];
meter = Quantity[1.0, "meter"];
cm = 0.01 meter;
celsius = Quantity[1.0, "celsius"];
watt = Quantity[1.0, "watt"];
soln = ToRulesReduce

thermalPower ⩵ area × ΔT / rvalue,
area ⩵ (4.5 meter)2,

,
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In[309]:=

thickness ⩵ 11 cm,
rvalue ⩵ thickness / thermalConductivity,
thermalConductivity ⩵ 0.84 watt / (meter × celsius),
Tindoor ⩵ 25 celsius,
Toutdoor ⩵ 15 celsius,
ΔT ⩵ Tindoor - Toutdoor,
nLightBulbs ⩵ thermalPower / (100 watt)



Out[315]= ΔT → 10. K , Toutdoor → 15. K , Tindoor → 25. K , thickness → 0.11 m ,

thermalPower → 1546.36 W , thermalConductivity → 0.84 kgm/(s3K) ,

rvalue → 0.130952 s3K/kg , area → 20.25 m2 , nLightBulbs → 15.4636

In[316]:= 0.130952 × 5.7

Out[316]= 0.746426

Problem 13

(a) Work required = 1000 J.
(b) Now work required = 383 J.
(c) SEER (realistic) = 13.6, SEER (ideal) = 35.5.

In[350]:= ClearAll["Global`*"];
joule = Quantity[1.0, "joule"];
kelvin = Quantity[1.0, "kelvin"];
soln = ToRules[Reduce[{

COP ⩵ 4.0,
Q ⩵ 4000 joule,
W ⩵ Q / COP,
Thot ⩵ (40 + 273.15) kelvin,
Tcold ⩵ (10 + 273.15) kelvin,
COPideal ⩵ Thot / (Thot - Tcold),
Wideal ⩵ Q / COPideal,
SEER ⩵ 3.4 COP,
SEERideal ⩵ 3.4 COPideal

}]]

Out[353]= Wideal → 383.203 J , W → 1000. J , Thot → 313.15 K , Tcold → 283.15 K ,

Q → 4000. J , SEERideal → 35.4903, SEER → 13.6, COPideal → 10.4383, COP → 4.

Problem 14

(a) 

I3 = I1 + I2.

(b) 

ℰ - I3 R4 - I1 R1 - I3 R3 = 0
ℰ - I3 R4 - I2 R5 - I2 R6 - I2 R2 - I3 R3 = 0
 I1 R1 - I2 R5 - I2 R6 - I2 R2 = 0
ℰ - I3 R4 - I2 R5 - I2 R6 - I2 R2 - I3 R3 = 0
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(a) 

I3 = I1 + I2.

(b) 

ℰ - I3 R4 - I1 R1 - I3 R3 = 0
ℰ - I3 R4 - I2 R5 - I2 R6 - I2 R2 - I3 R3 = 0
 I1 R1 - I2 R5 - I2 R6 - I2 R2 = 0
ℰ - I3 R4 - I2 R5 - I2 R6 - I2 R2 - I3 R3 = 0
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