
Physics 9 — Wednesday, September 5, 2018

I For Monday, you read PTFP chapter 3 (gravity, force, and
space); and for today, you read Giancoli chapter 11 (vibrations
& waves)

I Friday’s reading is a chapter on Canvas, from a different
book: it is Mazur ch16 (“waves in one dimension”)

I Course web page is positron.hep.upenn.edu/physics9

I Slides, etc.: positron.hep.upenn.edu/physics9/files

I After class Friday, we made some iPhone slo-mo videos of the
“string pull” experiment, to try to see what’s happening:
http://youtu.be/bwzb-OZtAW4

http://youtu.be/p28HXuwdeEE

http://youtu.be/b93eMzOVMN4

http://youtu.be/MTO9k3KFl4I

http://youtu.be/SZQye8EXCZU
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I (prop: tennis ball on string)

I When this ball moves in a circle at constant speed, it its
velocity constant? So is it accelerating?

I If the speed is v and the circle radius is R, what is the
magnitude of the ball’s acceleration? In what direction does
the acceleration point?

I For an object just above Earth’s surface, if a = g and
R = REarth, how long does it take to go around Earth’s
circumference?

I How do we write Newton’s universal law of gravitation?

I If we plug in m1 = MEarth, r = REarth, and divide by m2 (to
find the acceleration of m2), what familiar value do we get?

I What r do we need to plug in to get an orbit that encircles
Earth once per day? (Let’s try it.) What is the significance?

I This is as complicated as the math will get in Phys 009. In
general the calculations are less involved than in Phys 008.



I A kid’s toy car is at rest on the floor of a moving schoolbus.
The schoolbus driver jams on the brakes. The kid sees the car
accelerate forward. What coordinate system should she use, if
she wants to use Newton’s laws to analyze this situation?



What kind of motion do you see in this video?

https://youtu.be/JhJzdtzl6KY

What mathematical function (of time) might you use to represent
this motion? Suppose you want to write an approximate
expresssion for x(t) for some point near the top of the building.

https://youtu.be/JhJzdtzl6KY


If we try [for the very top of the building]

x(t) = A sin(2πft)

what (approximate) values should use use for A and for f ?

I I found a rough rule of thumb that period in seconds for a
typical skyscraper can be roughly estimated as 1/10 of number
of stories. One might have expected it to go like square root
of number of stories (like T = 2π

√
m/k), but remember that

longer beams tend to be less stiff than shorter ones.

I If you’re just working at your desk, not looking out the
window, and an earthquake strikes, you don’t “feel” your
position or velocity. But you can feel acceleration.

I It seems (I haven’t tried it) that you can feel accelerations of
0.005g or so, and you start to feel uncomfortable around
0.02g or so. (0.02g ≈ 0.2m/s2.)

I Let’s use our expression for x(t) to estimate the maximum
acceleration experienced by these building occupants!



We stopped here today. It took us a while to get here, because we
did a number of calculations on the blackboard.



A few things to remember about vibrations (periodic motion)

I Meaning of amplitude, period, frequency
I Drawing or interpreting a graph of periodic motion
I Don’t confuse angular frequency vs. frequency (ω = 2πf )
I Any system that is in stable equilibrium can undergo

vibrations w.r.t. that stable position.
I Mass on spring: (natural) frequency is
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I Pendulum: (natural) frequency is
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I For a given mass, a larger restoring force (more stiffness)
increases f0.

I If the restoring force is elastic (not gravitational), then a
bigger mass decreases f0. For pendulum, f0 doesn’t depend on
mass, because restoring force is gravitational.



Natural period of oscillation is independent of the amplitude

Mass on spring (use “0” to mean “natural”):
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Simple pendulum (small heavy object at end of “massless” cable):
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For a pendulum, the period is also independent of the mass,
because the restoring force (due to gravity) is proportional to
mass, so the mass cancels out.



Our two favorite oscillating systems are the “mass on a spring”
and the pendulum. Let’s start with the mass on the spring.

I I have here a spring (of unknown “spring constant”) and a
known mass. How can we measure the spring constant k ?

I Force exerted by spring has magnitude F = k (L− Lrelaxed).
The spring tries to go back to its relaxed length.

I What happens if I lift the bob from its equilibrium position,
then let it go? How do we describe the subsequent motion
mathematically, e.g. y(t) for the bob?

y(t) = yequilibrium + A cos(2πf0t)

I Does the period of the motion depend on the stiffness of the
spring? On the mass of the bob?

I “frequency” f0 = 1
2π

√
k/m. “period” T0 = 2π
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I If I lift the bob up farther before letting go, will the period of
the motion be the same or different?
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The skyscraper earthquake video came from
https://mathspig.wordpress.com/2011/03/21/

cool-formula-for-calculating-skyscraper-sway/

I Under the “earthquake engineering” heading, “base isolation”
(putting the building on pads or rollers) is a nice illustration of
Newton’s first law.

I Their second method is using a shock absorber to dissipate
the vibrational energy: we saw this when we discussed
resonance last year in Physics 8.

I Their third method is to use “active tuned mass dampers:”
use a compuer-controller counter-moving weight to actively
move against the building sway. This is analogous to using
destructive interference to make one sine wave cancel out
another sine wave.

Here, just FYI, I stumbled upon an academic site studying the
performance of tall buildings:

http://www3.nd.edu/~dynamo/tall_bldg.html

https://mathspig.wordpress.com/2011/03/21/cool-formula-for-calculating-skyscraper-sway/
https://mathspig.wordpress.com/2011/03/21/cool-formula-for-calculating-skyscraper-sway/
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Waves

If you have a very long chain of things that

I behave like oscillators when their neighbors are held fixed

I cause their neighbors to respond proportionally to their own
motion

then waves can propagate along that chain.

In a taut wire (e.g. piano string), speed of wave propagation is

v =

√
T

µ
=

√
tension

mass/length

Wave speed is a property of the medium.

More tension → faster propagation.
More mass per unit length → slower propagation.



Waves

Waves can be transverse or longitudinal, depending on whether the
motion of the individual oscillators is ⊥ or ‖ to direction of wave
propagation. You can make a slinky transmit either kind of wave.

You can make a single pulse propagate as a wave, or you can have
periodic waves that repeat again and again.

Periodic waves at a single frequency f (“harmonic waves”) are
sinusoidal and have wavelength

λ =
v

f

Usually people remember this as v = λf .



Question (to wake everyone up!)

Suppose that I am wiggling one end of a taut string to create
sinusoidal waves. If I double the frequency f at which I wiggle the
end, how does the wavelength λ change?

(A) The new wavelength is double the original wavelength

(B) The wavelength does not change

(C) The new wavelength is half the original wavelength



Sound waves in room-temperature air travel at a wave speed of
343 m/s. (Much more on sound next week!)

Digression: About how long does it take for a pulse of sound
(maybe a clap of thunder or the sound of a baseball bat hitting a
ball) to travel 1 km?

What about a mile (1.61 km ≈ (5/3) km)?

What about one foot ((1/3.28) meter, or (1/5280) mile)?

Sound waves in air travel 1 km in 3 s, 1 mile in 5 s,
1 foot in 1 millisecond.



Sound waves in room-temperature air travel at a wave speed of
343 m/s. At a frequency of about 34 Hz (near the lower end of the
range of frequencies people can hear), what is the wavelength?

(Young human ears can hear roughly 20 Hz — 20 kHz.)

At a frequency of 34300 Hz (about 2× above the upper limit of
human hearing), what is the wavelength?

What is the wavelength at 17150 Hz, which is close to the
(roughly) 20 kHz upper range for young human ears?

It turns out that the conventional telephone network only transmits
sounds in the frequency range 300 Hz — 3400 Hz. What’s the
wavelength (for sound in air) at 343 Hz? At 3430 Hz?
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Waves

The ideal situation for a wave pulse is to propagate forever down
an infinitely long string (or wave machine). When you shout into a
completely open field, there is no echo!

But sometimes the wave runs into an obstacle. The three easiest
cases to analyze are

I The far end of the string is clamped, immobilized:
reflected pulse has opposite sign as incident pulse

I The far end of the string is unconstrained (“free”):
reflected pulse has same sign as incident pulse

I The far end has a “terminator” or “dashpot” or “damper”
that perfectly absorbs all of the incoming wave’s energy:
no reflected pulse



Interference / superposition
A weird property of waves is that two waves can pass right through
one another. Whereas particles bounce off of one another, a wave
is not an obstacle to another wave. The two waves’ displacements
add up (algebraically), including their signs.

I A peak and a peak add to a larger peak

I A peak and a trough can add to zero

I Whether they add constructively or destructively depends on
the relative phases of the two waves

In one dimension, the big consequence of interference is that one
wave traveling to the right and an equal-size wave traveling to the
left will add up to form a standing wave.

In 2 and 3 dimensions, it gets much more interesting: if you have
two separated speakers playing the same tone, there will be some
places in the room where the amplitude is twice as large, and some
places in the room where the amplitude is zero! Noise-canceling
headphones use destructive interference of waves.



Wave movies

(I just started re-writing these as Processing sketches.)

I wave1 : two pulses passing through each other

I wave2 : wave pulse reflected by boundaries

I wave3.mp4 : two traveling waves add, forming standing wave
if magnitudes are same

I wave6.mp4 : standing waves



Question

Looking at the reflections in the movie wave2.mp4, do the left and
right ends of the string appear to be fixed or free? (Movie should
be playing on screen.)

(A) Left and right ends are both held fixed

(B) Left and right ends are both free

(C) Left end is free and right end is fixed

(D) Left end is fixed and right end is free



Standing waves

If you clamp both ends of a string of length L, then for harmonic
waves λ is forced to obey (where n = 1, 2, 3, . . .)

n · λ
2

= L ⇒ λ =
2L

n
⇒ f = n · v

2L

An integer number of half-wavelengths must fit in length L.

Combining this with v =
√

T
m/L we get

fn =
n

2L

√
T

m/L

More massive wire → lower f . Higher tension → higher f .
Make string shorter with fingertip → higher f .
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