
Physics 9 — Monday, September 10, 2018

I HW #1 due Friday in class

I HW help sessions: Wed 4–6pm DRL 4C6 (Bill),
Thu 6:30–8:30pm DRL 2C8 (Grace)

I For today you read PTFP ch7 (“waves, including UFOs . . .”)

I For Wednesday, you will read Giancoli ch12 (sound)

I Course web page is positron.hep.upenn.edu/physics9

I Slides, etc.: positron.hep.upenn.edu/physics9/files

I Who does not have a way to run Windows on your computer?

positron.hep.upenn.edu/physics9
positron.hep.upenn.edu/physics9/files


Waves

Waves can be transverse or longitudinal, depending on whether the
motion of the individual oscillators is ⊥ or ‖ to direction of wave
propagation. You can make a slinky transmit either kind of wave.

You can make a single pulse propagate as a wave, or you can have
periodic waves that repeat again and again. (We’ll talk more
about this difference next time.)

Periodic waves at a single frequency f (“harmonic waves”) are
sinusoidal and have wavelength

λ =
v

f

Usually people remember this as v = λf .



Question (to wake everyone up!)

Suppose that I am wiggling one end of a taut string to create
sinusoidal waves. If I double the frequency f at which I wiggle the
end, how does the wavelength λ change?

(A) The new wavelength is double the original wavelength

(B) The wavelength does not change

(C) The new wavelength is half the original wavelength



Waves

The ideal situation for a wave pulse is to propagate forever down
an infinitely long string (or wave machine). When you shout into a
completely open field, there is no echo!

But sometimes the wave runs into an obstacle. The three easiest
cases to analyze are

I The far end of the string is clamped, immobilized:
reflected pulse has opposite sign as incident pulse

I The far end of the string is unconstrained (“free”):
reflected pulse has same sign as incident pulse

I The far end has a “terminator” or “dashpot” or “damper”
that perfectly absorbs all of the incoming wave’s energy:
no reflected pulse



Interference / superposition
A weird property of waves is that two waves can pass right through
one another. Whereas particles bounce off of one another, a wave
is not an obstacle to another wave. The two waves’ displacements
add up (algebraically), including their signs.

I A peak and a peak add to a larger peak

I A peak and a trough can add to zero

I Whether they add constructively or destructively depends on
the relative phases of the two waves

In one dimension, the big consequence of interference is that one
wave traveling to the right and an equal-size wave traveling to the
left will add up to form a standing wave.

In 2 and 3 dimensions, it gets much more interesting: if you have
two separated speakers playing the same tone, there will be some
places in the room where the amplitude is twice as large, and some
places in the room where the amplitude is zero! Noise-canceling
headphones use destructive interference of waves.



Wave movies

(I just re-wrote my wave “movies” as Processing sketches. I used
the Python version of Processing rather than the original Java
version of Processing that some of you learned last year, as I hear
that Python is more useful to you than Java. I will plan to do a
lecture on the Python version of Processing on the day before
Thanksgiving, when turnout tends to be light. You can then try it
yourself for extra credit if you wish.)

I wave1py : two pulses passing through each other

I wave2py : wave pulse reflected by boundaries

I wave3py : two traveling waves add, forming standing wave if
magnitudes are same

I wave6py : standing waves



Question

Looking at the reflections in the animation wave2py, do the left
and right ends of the string appear to be fixed or free? (Sketch
should be playing on screen.)

(A) Left and right ends are both held fixed

(B) Left and right ends are both free

(C) Left end is free and right end is fixed

(D) Left end is fixed and right end is free



Standing waves
If you clamp both ends of a string of length L, then for harmonic
waves λ is forced to obey (where n = 1, 2, 3, . . .)

n · λ
2

= L ⇒ λ =
2L

n
⇒ f =

v

λ
= n · v

2L

A whole number of half-wavelengths must fit in length L. That’s
because sin(nπ) = 0, and we need the wave function D(x , t) to
equal zero at x = 0 and at x = L. (More about wave functions
later.)

Combining this with v =
√

T
m/L we get

fn =
n

2L

√
T

m/L

More massive wire → lower f . Higher tension → higher f .
Make string shorter with fingertip → higher f .



fn =
n

2L

√
T

m/L

Before class, I used a kitchen scale to find that a 3 m length of this
string has a mass of about 6 grams.

That’s m/L = 0.002 kg/m.

We have length L = 1.7 m and tension T equals the weight of an
0.4 kg block. (How much tension is that?)

So we expect a “fundamental” frequency around 13 or 14 Hz.
(You’ll see that in real life we’re pretty close — off by about 10%.)

What do you expect the shape of the “fundamental” standing
wave to look like? How would you describe it mathematically?
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Question

Suppose that a guitar string is tuned to play at 330 Hz. Now
suppose I replace the string with another string that is made of the
same material, has the same tension, but has three times the
diameter of the original string? What will the new fundamental
frequency be?

(A) 36 Hz

(B) 110 Hz

(C) 191 Hz

(D) 330 Hz

(E) 572 Hz

(F) 990 Hz

(G) 2970 Hz



I Mazur §16.6: The wave function D(x , t) for a harmonic (i.e.
single-frequency) traveling wave moving from left to right is

D(x , t) = A sin(kx−ωt) = A sin(
2πx

λ
− 2πft) = A sin(

2π

λ
(x − vt))

where ω = 2πf and k = 2π/λ = ω/v .

I while a traveling wave moving from right to left is

D(x , t) = A sin(kx + ωt)

I When two harmonic traveling waves of same amplitude, same
freq., and opposite direction meet, they form a standing wave:

D(x , t) = A sin(kx−ωt)+A sin(kx +ωt) = 2A sin(kx) cos(ωt)

D(x , t) = 2A sin(
2πx

λ
) cos(2πft)

http://positron.hep.upenn.edu/p9/files/wave3py.pyde

http://positron.hep.upenn.edu/p9/files/wave3py.pyde


I Standing wave (I dropped the factor of 2 out front):

D(x , t) = A sin(
2πx

λ
) cos(2πft)

I This expression can represent standing waves on a guitar
string of length L.

I We need D(x = 0, t) = 0 and D(x = L, t) = 0, because both
ends of the string are immobilized by the frets.

I The first is easy: sin(0) = 0.

I When else is the sine function equal to zero?

http://positron.hep.upenn.edu/p9/files/wave6py.pyde

http://positron.hep.upenn.edu/p9/files/wave6py.pyde


Sound waves in room-temperature air travel at a wave speed of
343 m/s. (Much more on sound in the next two weeks!)

Digression: About how long does it take for a pulse of sound
(maybe a clap of thunder or the sound of a baseball bat hitting a
ball) to travel 1 km?

What about a mile (1.61 km ≈ (5/3) km)?

What about one foot ((1/3.28) meter, or (1/5280) mile)?

Sound waves in air travel 1 km in 3 s, 1 mile in 5 s,
1 foot in 1 millisecond.
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Sound waves in room-temperature air travel at a wave speed of
343 m/s. At a frequency of about 34 Hz (near the lower end of the
range of frequencies people can hear), what is the wavelength?

(Young human ears can hear roughly 20 Hz — 20 kHz.)

At a frequency of 34300 Hz (about 2× above the upper limit of
human hearing), what is the wavelength?

What is the wavelength at 17150 Hz, which is close to the
(roughly) 20 kHz upper range for young human ears?

It turns out that the conventional telephone network only transmits
sounds in the frequency range 300 Hz — 3400 Hz. What’s the
wavelength (for sound in air) at 343 Hz? At 3430 Hz?
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