
Physics 9 — Monday, October 29, 2018

I So far three people plan to come along with me to Acentech’s
“3D Listening” demo Monday, 4pm, on 17th Street. We’ll
meet at the main DRL entrance at 3:25pm and walk briskly.
We’ll walk east on Walnut, then turn left on 17th to reach the
Sofitel at 120 S. 17th. My mobile phone number is . . .

I For today, you read Richard Muller’s chapter (written in 2009)
on Climate Change, as well as his 2012 NYT op-ed.

I There is nothing you need to read for this Wednesday, though
if you’re interested I have some material from Muller’s 2012
book Energy for Future Presidents that you could read for XC.



(Digression: connect energy/heat/power physics units to real life.)

A commonly used energy unit in chemistry is the calorie:

1 cal = 4.18 J

Even more common is the food Calorie:

1 Cal = 1000 cal = 4180 J

and remember that power is measured in watts:

1 W = 1 J/s

Q: A person typically consumes about 2000 food calories per day.
Roughly how many watts of power are required to power a person?

(A) 1 W (B) 10 W (C) 100 W (D) 1000 W (E) 10000 W



We just worked out that a person’s daily intake of 2000 dietary
Calories implies that it takes on average about 100 watts to power
a person.

2000× 4180 J

24× 60× 60 s
= 97 W

Former energy secretary Steven Chu was fond of pointing out that
since the USA has an overall energy usage of about 3× 1012 W
(including industry, etc.) and a population of about 300M people,
that’s an average of 10 kW per person in the USA, or roughly 100
“energy helpers” per person. (I think he used a more pejorative
word for “helper.”)

In other words, US energy use per person (including industry, etc.)
is about 100× a typical person’s 100 W metabolic rate.



Heat capacity

As you increase the temperature of a substance, its molecules
move faster. So its thermal energy increases. This thermal energy
is just an “incoherent” form of kinetic energy: you’re adding up a
whole bunch of 1

2mv2, but the velocities are all pointing in
different directions, so the substance as a whole is not moving even
though the individual molecules are moving.

The internal thermal energy of a monatomic gas (like helium or
argon) is 3

2kBT per molecule, or 3
2RT per mole.

You sometimes need to know how much energy is needed to heat
an object (like a brick wall, or an old metal baseboard radiator, or
a swimming pool) by some number of degrees. Tables usually list
energy per unit mass per degree C. This is known as specific
heat capacity (or more commonly just “specific heat”).



Q = mc ∆T

where c is the “specific heat,” whose SI units are
J

kg◦C

For example: how many joules of heat are needed to raise 10 kg of
water from 20◦C to 30◦C? How many watts of power are needed
to do this in 1000 s (about 17 minutes)?



Latent heat
At the boiling point, the internal energy of the gas phase is higher
than that of the liquid phase: need to overcome the forces that
keep molecules close together in a liquid.

Similarly, the internal energy of the liquid phase is higher than that
of the solid phase at the melting point.

So even at a fixed temperature, you need to add some energy to
turn a solid into a liquid, or to turn a liquid into a gas. “Latent
heat.” Called heat of fusion or heat of vaporization.



Latent heat is extremely useful. For instance, your body takes
advantage of the latent heat (heat of vaporization) of water when
you sweat.

Suppose that by exercising you double your metabolic rate, from
about 100 watts to about 200 watts.

How many milliliters of water (1 mL = 1 cc ≈ 1
30 ounce) do you

need to sweat per minute, in order for your body to remove these
extra 100 W by letting the sweat evaporate from your skin?

The latent heat of vaporization for water is 2260 kJ/kg =
2260 J/g. The density of water is 1 g/mL. See if you and your
neighbor can work out an answer (in milliliters per minute):

(A) 0.027 mL/min (B) 0.27 mL/min (C) 2.7 mL/min

(D) 27 mL/min (E) 270 mL/min (F) 2700 mL/min



I get

100 J/s × 60 s/min

1.0 g/mL × 2260 J/g
= 2.65 mL/minute

which is about an ounce every 11 minutes, i.e. a
glass of water every hour or two while exercising.
Seems like a plausible number.



Conduction of heat (thermal conductivity)

dQ

dt
=

kA

`
(T1 − T2) =

A

R
(T1 − T2)

“R value” is

`

k
=

thickness

thermal conductivity

(often given in US customary units, unfortunately)

I more area (in cross-section, perpendicular to
heat flow) → faster heat conduction

I bigger temperature difference → faster

I bigger thermal conductivity → faster

I thicker insulating layer → slower

I bigger “R value” → slower



I keep the inside of my house at 20◦C. If the thermal power
dQ/dt conducted through the walls of my house is 10 kilowatts
when the outdoor temperature is 10◦C, what will be the thermal
power conducted through the walls of my house when the outdoor
temperature is −10◦C?

(Hint: this is why the gas company often tells you the number of
“degree days” for the winter months. Your heating bill should scale
like the inside-outside temperature difference, integrated over
time.)

(A) 5 kW (B) 10 kW (C) 20 kW (D) 30 kW

By the way: 1 kW = 3400 BTU/hour. 1 BTU = 1055 J.
Anyone know the conventional definition of a BTU?



Concrete has a thermal conductivity k that is about 8.4× that of
wood. How thick a layer of concrete would I need to use in order
to provide thermal insulation equivalent to that of a 2 cm layer of
wood?

(A) 0.12 cm (B) 2 cm (C) 8.4 cm (D) 16.8 cm

The “R value” goes like (thickness) / (thermal conductivity). So if
the thermal conductivity is multiplied ×8.4, then the thickness also
needs to be multiplied ×8.4. So I need 16.8 cm of concrete to get
the same thermal insulation as 2 cm of wood.
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If 10 kilowatts of power (heat per unit time) is conducted through
the 10 m × 10 m roof of my house on a given winter day, how
much power would be conducted through a similar roof (same kind
of insulation, same thickness, etc.) that is 20 m × 20 m on the
same winter day?

(A) 2.5 kW (B) 10 kW (C) 20 kW (D) 40 kW

The area is quadrupled, so the conducted heat per unit time is
quadrupled. I get 40 kW.
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If you buy fiberglass insulation at Home Depot, the “R value” is
written on the paper backing.

R =
`

k

A U.S. customary R value of 1 is (in metric units) 0.176 m2◦C
W .

R values add: twice the thickness means twice the R value, which
means half as much heat conducted per unit time.



R values add: double-glazed window

R =
`

k

kglass = 0.84
W

m◦C

kair = 0.026
W

m◦C

kargon = 0.018
W

m◦C

What is `/k for 6 mm of glass? How about 3 mm of glass, then
10 mm of air, then 3 mm of glass?



R =
`

k

kglass = 0.84
W

m◦C
kair = 0.026

W

m◦C
kargon = 0.018

W

m◦C

What is `/k for 6 mm of glass? How about 3 mm of glass, then
10 mm of air, then 3 mm of glass?

0.006 m

0.84 W
m◦C

= 0.0071
m2◦C

W

0.010 m

0.026 W
m◦C

= 0.38
m2◦C

W

So in theory, two 3 mm panes of glass separated by 10 mm of air
will conduct about 1/50 as much heat per unit time as a single
6 mm pane of glass. (But we ignored convection and radiation.
And in real life, even a single layer of glass will build up an
insulating layer of cool air next to it, increasing its effectiveness.)



We’ve said that “dry air” is 78% N2, 21% O2, 1% Ar, 0.04% CO2.
What important constituent of ordinary air are we missing?

The fraction of water vapor in the air varies from region to region
(climate) and from day to day (weather). The maximum possible
fraction of water vapor in the air (before you get rain, snow, fog,
etc.) varies with temperature.

To discuss the quantity of one gas (e.g. water vapor) that is
dissolved in another gas (e.g. air), it helps to introduce the
concept of partial pressure, which is the pressure due to that
constituent alone.

Example: air at 1 atm is 21% O2. What is the partial pressure of
oxygen (in atmospheres)?

Answer: 0.21 atm, which is about 21300 N/m2.
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At a given temperature, the maximum possible
partial pressure of water vapor is called the
“(saturated) vapor pressure of water.”

When partial pressure of water vapor equals
saturated vapor pressure, a pool of standing
water is in equilibrium with water vapor: rate
of evaporation (liquid to gas) equals rate of
condensation (gas to liquid).

If partial pressure of water vapor exceeds the
saturated vapor pressure (e.g. if you take
saturated air and cool it), precipitation occurs.

Below this partial pressure, standing water will
evaporate.

When saturated vapor pressure equals external
atmospheric pressure, boiling occurs!



In humid air, the rate at which sweat can
evaporate from your skin (hence cooling your
body, via latent heat) is lower than in dry air.
So a hot, humid day feels more uncomfortable
than a hot, dry day.

HVAC climate-control systems monitor and
regulate “relative humidity” =

partial pressure of water vapor

saturated water vapor pressure
× 100%

R.H. ∼ 40%-50% is most comfortable.

Q: if T = 30◦C and R.H.=50%, what is
partial pressure of water vapor (in N/m2)?

In that case, what fraction of molecules in the
air are H2O molecules?



We learned last fall to associate irreversible processes (for which a
movie played backwards looks impossible) with the dissipation of
(coherent) mechanical energy into (incoherent) thermal energy.

I So you’re not surprised that after a few bounces, the initial
mechanical energy of a ball dissipates into thermal energy.

I But a movie of this process played backwards would look like
an impossible situation.

Similarly, you’re accustomed to seeing heat flow spontaneously
from a warm object to a cooler object. That’s why thermal
insulation is needed to slow this process down.

I So you’re not surprised when your glass of ice-water reaches
room temperature after sitting out for an hour.

I But again a movie of this process played backwards would
show something that looks impossible.

Both of these situations involve an increase in entropy; and
hence are irreversible. Let’s ponder the meaning of entropy and
its connection to probability.



Entropy
You might have learned in a math class at some point that if I toss
N coins, the probability of seeing m of those N coins land
heads-up is given by the binomial distribution,

P(m,N) =
N!

m! (N −m)!

(
1
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)N
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P(m,N) =
N!

m! (N −m)!

(
1

2

)N

If I toss N = 1000 coins, the probability of finding m heads-up is

heads probability . . . heads probability
0 0.9× 10−301 1000 0.9× 10−301

1 0.9× 10−298 999 0.9× 10−298

450 0.02% 550 0.02%
480 1.1% 520 1.1%
499 2.5% 501 2.5%
500 2.5%



Let’s take that same graph (for tossing 1000 coins) and change the
x-axis so that it tells us what fraction of the coins lands heads-up.

Now let’s see how the bottom graph changes as we vary the
number of coins that we toss.



Toss 10 coins (top) or 100 coins (bottom)



Toss 100 coins (top) or 1000 coins (bottom)



Toss 1000 coins (top) or 10000 coins (bottom)



Toss 10000 coins (top) or 100000 coins (bottom)



No matter how many coins you toss, the most probable outcome is
that half of the coins will land heads-up. But for a small number
of coins, it’s not so unlikely to see a fraction that is quite different
from 50%. As the number of coins increases, it becomes less and
less probable that the fraction of heads is very different from 50%.

When you toss N coins, the number of values of m that have some
reasonable probability of occurring is proportional to

√
N

So the number of heads that you expect to see goes roughly like

m ± δm =
N

2
×

(
1± 1√

N

)
i.e. you expect to be within about 10% of 50/50 for 100 coins, to

be within about 1% of 5000/5000 for 10000 coins, to be within
about 0.1% of 500000/500000 for a million coins, etc.



m ± δm =
N

2
×

(
1± 1√

N

)
If I toss N = 100 coins, I am not surprised to find any value
40 ≤ m ≤ 60, but I would be very surprised to find m = 30.

If I toss 1020 coins, the fraction of heads I expect to find is, on
average, 0.5. How far from 0.5 would be surprising?

1√
N

=
1√

1020
= 10−10

So I would be surprised to find a fraction of heads that is less than
0.4999999999 or larger than 0.5000000001



If I poll 10000 architects and find that 50% agree and 50%
disagree with the assertion that the spire atop the new One World
Trade Center legitimately makes 1 WTC taller than Chicago’s
Willis (Sears) Tower, what is the “margin of error” of my survey?

(A) roughly ±10%

(B) roughly ±1%

(C) roughly ±0.1%

(D) roughly ±0.01%



Answer: roughly ±1%, because 1/
√

10000 = 0.01

Note for statistics buffs: I think if you calculate more carefully, the
r.m.s. fluctuation is more like ±1

2%, so my rule-of-thumb ±1%
roughly corresponds to the 95% confidence interval in this case.



Just to reiterate:

Suppose I repeatedly toss 1000 coins such that on average the
number of heads-up coins is 500.

I don’t always get exactly 500 heads. The range of heads-up coins
that would be “not surprising” (or not suspicious) is approximately

(500−
√

500) ≤ Nheads ≤ (500 +
√

500)

So anything in the 475–525 range would be unsurprising. Even 460
or 540 heads would not be too surprising. Finding 400 heads (or
600 heads) would be extremely surprising.

In general, when you count things that are randomly sampled, and
you expect on average to count N of them, the “unsurprising”
range of fluctuations from sample to sample is roughly ±

√
N.



Suppose I survey 20000 people and find that 9970 of them prefer
chocolate ice cream, while 10030 of them prefer vanilla ice cream.

If I repeat the survey (with different people, randomly chosen)
again and again each week, roughly how much do I expect that
9970 number to vary, just because of the finite size of the number
of people surveyed?

I don’t expect to get exactly 9970 votes for chocolate each week.
Instead, I expect the number to vary from survey to survey by
about . . .

(A) varies by about ±1

(B) varies by about ±10

(C) varies by about ±100

(D) varies by about ±1000



Imagine that you have 1023 gas molecules in a box. Then you
mark off half of the volume with a ruler and ask “What fraction of
the molecules are in the left half of the box?”

This is like tossing 1023 coins and asking what fraction f is
heads-up. You expect f to be almost exactly 0.5.

If you do the math, you expect something like

0.499999999997 < f < 0.500000000003

So for all practical purposes, exactly half of the molecules are in
each half of the volume. That’s called “equipartition of space.”



The number of heads m (or equivalently the fraction of heads
m/N) could be called the “macro state,” or the observable state of
the system. If I tossed 1020 coins that had one side painted black
and one side painted white, I could measure the “macro state”
without looking at every coin.

Similarly, the observable state (“macro state”) of 1023 gas
molecules is given by P, V , and N. (The “basic state,” a.k.a.
“micro state,” is described by writing down every particle’s
position and velocity.)

The number of particles is so huge that the chance that all of the
molecules are going to huddle up on one side of the room is
beyond infinitesimal.

The most probable macrostate is the one with the largest number
of basic states. Once a closed system has reached thermal
equilibrium (e.g. once it has a well-defined temperature), it will
stay in the most probable state or states.



Entropy
The logarithm of [ the number, Ω, of different basic states that
contribute to a given macrostate ] is called the entropy of that
macrostate:

S = ln(Ω)

for the coin toss, the macrostate corresponds to knowing N and m,
and Ω corresponds to N!

m! (N−m)!

Interesting nerd fact (“Stirling’s formula”): as N →∞,

ln(N!) → N (ln(N)− 1) ≈ N ln(N)

So the “statistical entropy,” S , for m coins heads-up is

S = ln(Ω) = ln

(
N!

m! (N −m)!

)
≈ N lnN−m lnm−(N−m) ln(N−m)



S = ln(Ω) = ln

(
N!

m! (N −m)!

)
≈ N lnN−m lnm−(N−m) ln(N−m)



Suppose I start out with a jar of 1000 coins that are carefully
arranged to be entirely heads-up, and I shake the jar for a long
time. What will I find?

Shaking will tend toward more probable (higher entropy) states.
After shaking, I will find that the entropy has increased to the
largest possible value (plus or minus very small fluctuations).

Once you reach “equilibrium,” i.e. the mheads ≈ 500 state, you will
never spontaneously go back to the mheads ≈ 0 state. It’s just too
improbable. Once you shake for long enough to get close to 500,
you’ll stay pretty close to 500 (roughly within 500±

√
500 or so).

Similarly, the second law of thermodynamics states that the
entropy of a closed system will never decrease with time. (It can
stay the same or can increase.) The 2nd law is just a statement
that a closed system evolves toward the most probable macrostate.
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Entropy



Entropy

Again, second law of thermodynamics (“the entropy law”) states
that the entropy of a closed system will never decrease with time.
(It can stay the same or can increase.)

For a system that is not closed (i.e. it can exchange energy with
its environment), the entropy law states that the combined entropy
of the system + its environment will never decrease with time. (It
can stay the same or can increase.) This is equivalent to treating
“system + environment” as a (much larger) closed system.



Increases in entropy are associated with irreversible processes, like
the dissipation of mechanical energy into heat when I drop a tennis
ball and let it bounce until it comes to rest.

Reversible processes (i.e. processes for which a movie played either
forward or backward looks like physics that is possible) correspond
to zero change in entropy.

For a system that is in equilibrium with a thermal reservoir at
temperature T , you can relate the system’s change in entropy to
the “energy transferred thermally” (a.k.a. heat) into the system:

∆S =
Q

kBT

or in other words,
Q = kBT∆S

A net heat (Q) flow into a system increases the system’s entropy.
(Giancoli and Mazur have different conventions about the factor of
kB . Mazur uses “statistical entropy,” which no units; Giancoli uses
“thermodynamic entropy,” which is in J/K (joules per kelvin).)



About HW problem 2 for today (Reynolds number):

If the same flow (volume per unit time) of a fluid passes
through both wide and narrow sections of the pipe/duct/river/etc.,
the narrow section is more likely to be turbulent, hence more likely
to be noisy. If you only partially close off an HVAC duct, so that
(approximately) the same air flow must pass (at higher speed)
through a reduced area, the air flow makes more noise.



Reynolds number:

Re =
2rvρ

η
∝ rv

Flow rate (volume/time):

Q = Av = πr2 v ∝ r2 v

Suppose r1 = R, v1 = V , and r2 = 2R. To get same flow,
Q2 = Q1, you need v2 = (V /4). Then

Q2

Q1
=

r22 v2
r21 v1

=
(2R)2(V /4)

(R)2(V )
= 1

But
Re2
Re1

=
r2 v2
r1 v1

=
(2R)(V /4)

(R)(V )
=

1

2

Same flow through wider duct has smaller Reynolds number, so is
less turbulent. Consistent with pictures of river. (This argument
depends on same flow rate: if making the pipe bigger just allows a
bigger flow, then you’re not reducing turbulence.)



Physics 9 — Monday, October 29, 2018

I So far three people plan to come along with me to Acentech’s
“3D Listening” demo Monday, 4pm, on 17th Street. We’ll
meet at the main DRL entrance at 3:25pm and walk briskly.
We’ll walk east on Walnut, then turn left on 17th to reach the
Sofitel at 120 S. 17th. My mobile phone number is . . .

I For today, you read Richard Muller’s chapter (written in 2009)
on Climate Change, as well as his 2012 NYT op-ed.

I There is nothing you need to read for this Wednesday, though
if you’re interested I have some material from Muller’s 2012
book Energy for Future Presidents that you could read for XC.


