
Physics 9 — Wednesday, October 31, 2018

I HW07 due Friday in class.

I HW help sessions: Wed 4–6pm DRL 4C2 (Bill),
Thu 6:30–8:30pm DRL 2C8 (Grace)

I There was no required reading for today, but if you’re
interested I have a newer Climate Change chapter from
Muller’s 2012 book Energy for Future Presidents that you
could read for XC.



We’ve said that “dry air” is 78% N2, 21% O2, 1% Ar, 0.04% CO2.
What important constituent of ordinary air are we missing?

The fraction of water vapor in the air varies from region to region
(climate) and from day to day (weather). The maximum possible
fraction of water vapor in the air (before you get rain, snow, fog,
etc.) varies with temperature.

To discuss the quantity of one gas (e.g. water vapor) that is
dissolved in another gas (e.g. air), it helps to introduce the
concept of partial pressure, which is the pressure due to that
constituent alone.

Example: air at 1 atm is 21% O2. What is the partial pressure of
oxygen (in atmospheres)?

Answer: 0.21 atm, which is about 21300 N/m2.
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At a given temperature, the maximum possible
partial pressure of water vapor is called the
“(saturated) vapor pressure of water.”

When partial pressure of water vapor equals
saturated vapor pressure, a pool of standing
water is in equilibrium with water vapor: rate
of evaporation (liquid to gas) equals rate of
condensation (gas to liquid).

If partial pressure of water vapor exceeds the
saturated vapor pressure (e.g. if you take
saturated air and cool it), precipitation occurs.

Below this partial pressure, standing water will
evaporate.

When saturated vapor pressure equals external
atmospheric pressure, boiling occurs!



In humid air, the rate at which sweat can
evaporate from your skin (hence cooling your
body, via latent heat) is lower than in dry air.
So a hot, humid day feels more uncomfortable
than a hot, dry day.

HVAC climate-control systems monitor and
regulate “relative humidity” =

partial pressure of water vapor

saturated water vapor pressure
× 100%

R.H. ∼ 40%-50% is most comfortable.

Q: if T = 30◦C and R.H.=50%, what is
partial pressure of water vapor (in N/m2)?

In that case, what fraction of molecules in the
air are H2O molecules?



We learned last fall to associate irreversible processes (for which a
movie played backwards looks impossible) with the dissipation of
(coherent) mechanical energy into (incoherent) thermal energy.

I So you’re not surprised that after a few bounces, the initial
mechanical energy of a ball dissipates into thermal energy.

I But a movie of this process played backwards would look like
an impossible situation.

Similarly, you’re accustomed to seeing heat flow spontaneously
from a warm object to a cooler object. That’s why thermal
insulation is needed to slow this process down.

I So you’re not surprised when your glass of ice-water reaches
room temperature after sitting out for an hour.

I But again a movie of this process played backwards would
show something that looks impossible.

Both of these situations involve an increase in entropy; and
hence are irreversible. Let’s ponder the meaning of entropy and
its connection to probability.



Entropy
You might have learned in a math class at some point that if I toss
N coins, the probability of seeing m of those N coins land
heads-up is given by the binomial distribution,

P(m,N) =
N!

m! (N −m)!
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P(m,N) =
N!

m! (N −m)!

(
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)N

If I toss N = 1000 coins, the probability of finding m heads-up is

heads probability . . . heads probability
0 0.9× 10−301 1000 0.9× 10−301

1 0.9× 10−298 999 0.9× 10−298

450 0.02% 550 0.02%
480 1.1% 520 1.1%
499 2.5% 501 2.5%
500 2.5%



Let’s take that same graph (for tossing 1000 coins) and change the
x-axis so that it tells us what fraction of the coins lands heads-up.

Now let’s see how the bottom graph changes as we vary the
number of coins that we toss.



Toss 10 coins (top) or 100 coins (bottom)



Toss 100 coins (top) or 1000 coins (bottom)



Toss 1000 coins (top) or 10000 coins (bottom)



Toss 10000 coins (top) or 100000 coins (bottom)



No matter how many coins you toss, the most probable outcome is
that half of the coins will land heads-up. But for a small number
of coins, it’s not so unlikely to see a fraction that is quite different
from 50%. As the number of coins increases, it becomes less and
less probable that the fraction of heads is very different from 50%.

When you toss N coins, the number of values of m that have some
reasonable probability of occurring is proportional to

√
N

So the number of heads that you expect to see goes roughly like

m ± δm =
N

2
×
(

1± 1√
N

)
i.e. you expect to be within about 10% of 50/50 for 100 coins, to

be within about 1% of 5000/5000 for 10000 coins, to be within
about 0.1% of 500000/500000 for a million coins, etc.



m ± δm =
N

2
×
(

1± 1√
N

)
If I toss N = 100 coins, I am not surprised to find any value
40 ≤ m ≤ 60, but I would be very surprised to find m = 30.

If I toss 1020 coins, the fraction of heads I expect to find is, on
average, 0.5. How far from 0.5 would be surprising?

1√
N

=
1√

1020
= 10−10

So I would be surprised to find a fraction of heads that is less than
about 0.4999999999 or larger than about 0.5000000001



If I poll 10000 architects and find that 50% agree and 50%
disagree with the assertion that the spire atop the new One World
Trade Center legitimately makes 1 WTC taller than Chicago’s
Willis (Sears) Tower, what is the “margin of error” of my survey?

(A) roughly ±10%

(B) roughly ±1%

(C) roughly ±0.1%

(D) roughly ±0.01%



Answer: roughly ±1%, because 1/
√

10000 = 0.01

Note for statistics buffs: I think if you calculate more carefully, the
r.m.s. fluctuation is more like ±1

2%, so my rule-of-thumb ±1%
roughly corresponds to the 95% confidence interval in this case.



Just to reiterate:

Suppose I repeatedly toss 1000 coins such that on average the
number of heads-up coins is 500.

I don’t always get exactly 500 heads. The range of heads-up coins
that would be “not surprising” (or not suspicious) is approximately

(500−
√

500) ≤ Nheads ≤ (500 +
√

500)

So anything in the 475–525 range would be unsurprising. Even 460
or 540 heads would not be too surprising. Finding 400 heads (or
600 heads) would be extremely surprising.

In general, when you count things that are randomly sampled, and
you expect on average to count N of them, the “unsurprising”
range of fluctuations from sample to sample is roughly ±

√
N.



Suppose I survey 20000 people and find that 9970 of them prefer
chocolate ice cream, while 10030 of them prefer vanilla ice cream.

If I repeat the survey (with different people, randomly chosen)
again and again each week, roughly how much do I expect that
9970 number to vary, just because of the finite size of the number
of people surveyed?

I don’t expect to get exactly 9970 votes for chocolate each week.
Instead, I expect the number to vary from survey to survey by
about . . .

(A) varies by about ±1

(B) varies by about ±10

(C) varies by about ±100

(D) varies by about ±1000



Imagine that you have 1023 gas molecules in a box. Then you
mark off half of the volume with a ruler and ask “What fraction of
the molecules are in the left half of the box?”

This is like tossing 1023 coins and asking what fraction f is
heads-up. You expect f to be almost exactly 0.5.

If you do the math, you expect something like

0.499999999997 < f < 0.500000000003

So for all practical purposes, exactly half of the molecules are in
each half of the volume. That’s called “equipartition of space.”



The number of heads m (or equivalently the fraction of heads
m/N) could be called the “macro state,” or the observable state of
the system. If I tossed 1020 coins that had one side painted black
and one side painted white, I could measure the “macro state”
without looking at every coin.

Similarly, the observable state (“macro state”) of 1023 gas
molecules is given by P, V , and N. (The “basic state,” a.k.a.
“micro state,” is described by writing down every particle’s
position and velocity.)

The number of particles is so huge that the chance that all of the
molecules are going to huddle up on one side of the room is
beyond infinitesimal.

The most probable macrostate is the one with the largest number
of basic states. Once a closed system has reached thermal
equilibrium (e.g. once it has a well-defined temperature), it will
stay in the most probable state or states.



Entropy
The logarithm of [ the number, Ω, of different basic states that
contribute to a given macrostate ] is called the entropy of that
macrostate:

S = ln(Ω)

for the coin toss, the macrostate corresponds to knowing N and m,
and Ω corresponds to N!

m! (N−m)!

Interesting nerd fact (“Stirling’s formula”): as N →∞,

ln(N!) → N (ln(N)− 1) ≈ N ln(N)

So the “statistical entropy,” S , for m coins heads-up is

S = ln(Ω) = ln

(
N!

m! (N −m)!

)
≈ N lnN−m lnm−(N−m) ln(N−m)



S = ln(Ω) = ln

(
N!

m! (N −m)!

)
≈ N lnN−m lnm−(N−m) ln(N−m)



Suppose I start out with a jar of 1000 coins that are carefully
arranged to be entirely heads-up, and I shake the jar for a long
time. What will I find?

Shaking will tend toward more probable (higher entropy) states.
After shaking, I will find that the entropy has increased to the
largest possible value (plus or minus very small fluctuations).

Once you reach “equilibrium,” i.e. the mheads ≈ 500 state, you will
never spontaneously go back to the mheads ≈ 0 state. It’s just too
improbable. Once you shake for long enough to get close to 500,
you’ll stay pretty close to 500 (roughly within 500±

√
500 or so).

Similarly, the second law of thermodynamics states that the
entropy of a closed system will never decrease with time. (It can
stay the same or can increase.) The 2nd law is just a statement
that a closed system evolves toward the most probable macrostate.
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Entropy

Again, second law of thermodynamics (“the entropy law”) states
that the entropy of a closed system will never decrease with time.
(It can stay the same or can increase.)

For a system that is not closed (i.e. it can exchange energy with
its environment), the entropy law states that the combined entropy
of the system + its environment will never decrease with time. (It
can stay the same or can increase.) This is equivalent to treating
“system + environment” as a (much larger) closed system.



Increases in entropy are associated with irreversible processes, like
the dissipation of mechanical energy into heat when I drop a tennis
ball and let it bounce until it comes to rest.

Reversible processes (i.e. processes for which a movie played either
forward or backward looks like physics that is possible) correspond
to zero change in entropy.

For a system that is in equilibrium with a thermal reservoir at
temperature T , you can relate the system’s change in entropy to
the “energy transferred thermally” (a.k.a. heat) into the system:

∆S =
Q

kBT

or in other words,
Q = kBT∆S

A net heat (Q) flow into a system increases the system’s entropy.
(Giancoli and Mazur have different conventions about the factor of
kB . Mazur uses “statistical entropy,” which no units; Giancoli uses
“thermodynamic entropy,” which is in J/K (joules per kelvin).)



For an ideal gas, we learned

PV = NkBT

The thermal energy of the gas (if monatomic like He, Ar, etc.) is

Ethermal =
3

2
NkBT =

3

2
PV

(Complication that we’ll ignore: the 3
2 becomes d

2 for the
non-monatomic case.)

If I compress the gas without letting any heat escape, I will increase
its thermal energy. You know from experience (e.g. bicycle pump)
that work (W ) is required to compress a gas: as I push down on a
piston, I exert a force that opposes the gas pressure.



So we can increase the energy of a gas by doing mechanical work
(W ) on the gas, which decreases the gas’s volume:

W(ON gas) = −
∫

P dV

W > 0 (work done ON the gas) increases the gas’s energy and
decreases the gas’s volume.

You also know from experience that you can increase the
temperature (and therefore the energy) of the gas by heating it,
i.e. by putting it in contact with an object of higher temperature.

The transfer of incoherent thermal energy into a system (usually
because of a temperature difference) is called heat (Q).

FYI: Don’t confuse “heat” (Q) with “thermal energy” (Ethermal,
a.k.a. U). Because the word “heat” is used ambiguously, Mazur’s
book refers to Q as “energy transferred thermally.”



So we have two ways to add energy to a gas: W and Q.

∆Ethermal = W + Q

W is due to (coherent) mechanical interactions, like a piston
moving up and down or an electric motor pumping on the gas.

Q is due to (incoherent) thermal interactions, like the jiggling
molecules of an adjacent heat bath (thermal reservoir) causing the
molecules of the gas to reach the temperature of the heat bath.

I If Q = 0 the entropy of the gas does not change.

I If Q > 0 the entropy of the gas increases.

I If Q < 0 the entropy of the gas decreases.

I For heat transfer Q into the gas at constant temperature T ,

∆Sgas =
Q

kBT

Q < 0 is only possible if there is some compensating change in
entropy somewhere else, such that the overall ∆S ≥ 0.



Heating (Q > 0) or cooling (Q < 0) the gas while W = 0 looks
like ∆V = 0 (isochore, “constant volume”). Doing work on the
gas (W > 0) or letting the gas do work (W < 0) while Q = 0

looks like Pf V
(5/3)
f = PiV

(5/3)
i (isentrope, “constant entropy”).

Giancoli says “adiabatic” where Mazur says “isentropic.”



In the unlikely event that anyone wants to know where the 5
3 in

PV (5/3) comes from, it’s because (for a monatomic gas, d = 3)

0 = ∆S = N ln

(
Vf

Vi

)
+

3

2
N ln

(
Tf

Ti

)
then using the ideal gas law, PV ∝ T ,

0 = ∆S = N ln

(
Vf

Vi

)
+

3

2
N ln

(
Pf Vf

PiVi

)
0 = ∆S =

5

2
N ln

(
Vf

Vi

)
+

3

2
N ln

(
Pf

Pi

)

1 =

(
Vf

Vi

)5

×
(
Pf

Pi

)3

so finally (for an isentropic process on a monatomic gas)

PiV
(5/3)
i = Pf V

(5/3)
f

The starting point was Mazur eq 19.61. But you don’t need to
know this!



Heating (Q > 0) or cooling (Q < 0) the gas while W = 0 looks
like ∆V = 0 (isochore).

Doing work on the gas (W > 0) or letting the gas do work
(W < 0) at constant temperature T looks like Pf Vf = PiVi

(isotherm). (For an engine, W > 0 happens at low T .)



This cycle consists of two isotherms (∆T = 0) and two isochores
(∆V = 0). The cycle is 4→ 1→ 2→ 3→ 4→ . . . On which
parts of the cycle is positive work done ON the gas (Win > 0)?

(A) 4→ 1 (B) 1→ 2 (C) 2→ 3 (D) 3→ 4
(E) 1→ 2 and 3→ 4 (F) 4→ 1 and 2→ 3



This cycle consists of two isotherms (∆T = 0) and two isochores
(∆V = 0). The cycle is 4→ 1→ 2→ 3→ 4→ . . .. On which
parts of the cycle is positive work done BY the gas (Wout > 0)?

(A) 4→ 1 (B) 1→ 2 (C) 2→ 3 (D) 3→ 4
(E) 1→ 2 and 3→ 4 (F) 4→ 1 and 2→ 3



This cycle consists of two isotherms (∆T = 0) and two isochores
(∆V = 0). The cycle is 4→ 1→ 2→ 3→ 4→ . . .. Over one
complete cycle, is Wout larger than, smaller than, or equal to Win?

(A) Wout >Win (B) Wout <Win (C) Wout = Win



This cycle consists of two isotherms (∆T = 0) and two isochores
(∆V = 0). The cycle is 4→ 1→ 2→ 3→ 4→ . . .. On which
parts of the cycle is the internal energy of the gas constant?

(A) 4→ 1 (B) 1→ 2 (C) 2→ 3 (D) 3→ 4
(E) 1→ 2 and 3→ 4 (F) 4→ 1 and 2→ 3 (G) none





Rules for “steady devices” (engine, heat pump, etc.)
I Over one cycle ∆Ethermal = W + Q = 0 (the energy of the

gas returns to the value at which it started):

Winput + Qinput = Woutput + Qoutput

I The total entropy cannot decrease. Since the gas returns to
its initial state at the end of each cycle (∆Scycle = 0), this
implies that the entropy of the environment cannot decrease:

∆Senvironment =
Qoutput

kBToutput
− Qinput

kBTinput
≥ 0

I Notice that moving heat from the device out to the
environment increases Senv, while moving heat from the
environment in to the device decreases Senv.

Qoutput

Toutput
≥ Qinput

Tinput

I If you’re trying to do useful work with the heat (Qinput), some
of the heat (Qoutput) is always thrown away as a by-product.



Engine efficiency
I What you “pay” to run the engine is Qinput, which comes

from e.g. burning fuel.
I What you want from the engine is mechanical work

Woutput −Winput = −W
(Mazur and Giancoli have different sign conventions for W .)

I The efficiency of a heat engine is defined as

η =
Woutput −Winput

Qinput

I An engine takes in Qinput at some high temperature Tinput

and exhausts waste heat Qoutput at some low temperature
Toutput. Engines need Tinput > Toutput and work best when
Tinput � Toutput.

I The entropy law says that engines can never do better than
the theoretical ∆Senvironment = 0 case (“reversible” engine):

η ≤ 1− Toutput

Tinput
efficiency ≤ 1− Tcold

Thot





Refrigerator: PV diagram goes counterclockwise
Dumb example of fridge (but easy to illustrate with coffee cans)

Doing work on the gas (W > 0) or letting the gas do work
(W < 0) at constant temperature T looks like Pf Vf = PiVi

(isotherm). (For a fridge, W > 0 happens at high T .)



This is a “reversible” (∆Senv = 0) fridge cycle. Doing work on the
gas (W > 0) or letting the gas do work (W < 0) at constant
temperature T looks like Pf Vf = PiVi (isotherm). Does anyone
know the name of the cycle has two isotherms and two isentropes?



If I compress a gas (or let it expand) while the gas is sealed in a
thermally insulated vessel (like a thermos bottle with a piston), so
that the gas can’t exchange heat with the environment, is that
process called
(a) “isothermal” or
(b) “isentropic” (a.k.a. “adiabatic”)?

If I compress a gas (or let it expand) while the gas is in thermal
contact with in a large container of water (a “heat bath” a.k.a.
“thermal reservoir”), so that the gas maintains the same constant
temperature as the reservoir, is that process called
(a) “isothermal” or
(b) “isentropic” (a.k.a. “adiabatic”)?



Refrigerator “coefficient of performance”

I What you “pay” to run the fridge is W , which comes from
the “compressor’s” electric motor.

I What you want from the fridge is the cooling: Qinput

I The coefficient of performance of a fridge is defined as

COPcooling =
Qinput

W

I A fridge performs best when the kitchen (Toutput) is not too
much warmer than the desired fridge temperature (Tinput)!
Unlike an engine, a fridge prefers a small ∆T .

I The entropy law dictates that fridges can never do better than
the theoretical ∆Senv = 0 case (ideal “reversible” fridge):

COPcooling ≤
Tinput

Toutput − Tinput
COPcooling ≤

Tcold

Thot − Tcold



Heat pump “coefficient of performance”
I What you “pay” to run the heat pump is W , which comes

from an electric motor — same as with a fridge.
I What you want from heat pump is the heating: Qoutput

I The coefficient of performance of a heat pump is

COPheating =
Qoutput

W
I A heat pump performs best when the house (Toutput) is not

too much warmer than the heat-exchange-coil (Tinput)! A
heat pump prefers a small ∆T . (So bury coil underground.)

I The entropy law dictates that heat pumps can never do better
than the theoretical ∆Senv = 0 case (ideal “reversible” pump):

COPheating ≤
Toutput

Toutput − Tinput
COPheating ≤

Thot

Thot − Tcold

I Confusingly, Toutput (to which heat is output) is the indoor
temperature, and Tinput (from which heat is input) is the
outdoor temperature!



About HW problem 2 for today (Reynolds number):

If the same flow (volume per unit time) of a fluid passes
through both wide and narrow sections of the pipe/duct/river/etc.,
the narrow section is more likely to be turbulent, hence more likely
to be noisy. If you only partially close off an HVAC duct, so that
(approximately) the same air flow must pass (at higher speed)
through a reduced area, the air flow makes more noise.



Reynolds number:

Re =
2rvρ

η
∝ rv

Flow rate (volume/time):

Q = Av = πr2 v ∝ r2 v

Suppose r1 = R, v1 = V , and r2 = 2R. To get same flow,
Q2 = Q1, you need v2 = (V /4). Then

Q2

Q1
=

r22 v2
r21 v1

=
(2R)2(V /4)

(R)2(V )
= 1

But
Re2
Re1

=
r2 v2
r1 v1

=
(2R)(V /4)

(R)(V )
=

1

2

Same flow through wider duct has smaller Reynolds number, so is
less turbulent. Consistent with pictures of river. (This argument
depends on same flow rate: if making the pipe bigger just allows a
bigger flow, then you’re not reducing turbulence.)



Physics 9 — Wednesday, October 31, 2018

I HW07 due Friday in class.

I HW help sessions: Wed 4–6pm DRL 4C2 (Bill),
Thu 6:30–8:30pm DRL 2C8 (Grace)

I There was no required reading for today, but if you’re
interested I have a newer Climate Change chapter from
Muller’s 2012 book Energy for Future Presidents that you
could read for XC.


