
Physics 351, Spring 2015, Homework #1.
Due at start of class, Friday, January 23, 2015

Instead of killing trees to hand out a printed syllabus, I’ll just point you to the
course web site, which contains a detailed syllabus that I will keep up-to-date
throughout the term:

positron.hep.upenn.edu/p351

When you finish this homework, remember to visit the feedback page at

positron.hep.upenn.edu/q351

to tell me how the homework went for you.

1. Let u be an arbitrary fixed unit vector. Show that any vector b satisfies

b2 = (u · b)2 + (u× b)2.

Explain this result in words, with the help of a picture.

2. If r, v, and a denote the position, velocity, and acceleration of a particle,
prove that

d

dt
[a · (v × r)] = ȧ · (v × r).

Hint: Note that the derivative operator d
dt

distributes over vector products
(dot product, cross product) analogously to the way it does over ordinary
products. So for example,

d

dt
(a · b) = ȧ · b + a · ḃ.

3. The two vectors a and b lie in the xy plane and make angles α and β with
the x axis. (a) By evaluating the dot product a · b in two ways [namely using
equations (1.6) and (1.7)] prove the well-known trig identity

cos(α− β) = cosα cos β + sinα sin β.

(b) By similarly evaluating a× b prove that

sin(α− β) = sinα cos β − cosα sin β.
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4. Prove that the magnetic forces F12 and F21 between two steady current
loops (for which there is no electromagnetic wave to carry away momentum)
obey Newton’s third law. Hints: Let the two currents be I1 and I2 and let
typical points on the two loops be r1 and r2. If dr1 and dr2 are short segments
of the loops, then according to the Biot-Savart law, the force on dr1 due to
dr2 is

µ0

4π

I1I2
s2

dr1 × (dr2 × ŝ)

where s = r1 − r2, and ŝ = s/s. The force F12 is found by integrating around
both loops. Start by writing down the force on dr1 due to dr2, and expand it
using the “BAC-CAB” rule. Do the same thing for the force on dr2 due to dr1.
Each force will have two terms. One term in each force will involve dr1 · dr2,
and you can show that they are the negative of each other. You should be able
to show that the other term in each force is of the form

∮
∇f · dr =

∮
df = 0,

i.e. the line integral of the gradient of a scalar function is zero around a closed
path. This argument thus establishes that F12 = −F21.

5. The hallmark of an inertial reference frame is that any object which is
subject to zero net force will travel in a straight line at constant speed. To
illustrate this, consider the following experiment: I am standing on the ground
(which we take to be an inertial frame, called frame S) beside a perfectly flat
horizontal turntable, rotating with constant angular velocity ω. I lean over
and shove a frictionless puck so that it slides across the turntable, straight
through the center. The puck is subject to zero net force and, as seen from my
inertial frame, travels in a straight line. (a) Write down the polar coordinates
r, φ of the puck as functions of time, as measured in the inertial frame S of
the observer on the ground. (Assume that the puck was launched along the
axis φ = 0 at t = 0.) (b) Now write down the polar coordinates r′, φ′ of the
puck as measured by an observer (frame S ′) at rest on the turntable. (Choose
these coordinates so that φ and φ′ coincide at t = 0.) (c) Describe and sketch
the path as seen by this second observer. Is the frame S ′ inertial?

6. The differential equation (1.51) for the skateboard of Example 1.2 cannot
be solved in terms of elementary functions, but is easily solved numerically.
(a) Use Mathematica (or other software if you prefer) to solve the differential
equation for the case that the board is released from φ0 = 20 degrees, using
the values R = 5 m and g = 9.8 m/s2. Make a plot of φ(t) for two or three
periods. (b) On the same picture, plot the approximate solution (1.57) with
the same φ0 = 20◦. Comment on your two graphs. (c) Repeat parts (a) and
(b) using the initial value φ0 = π/2 and comment. You will need to learn to
use Mathematica’s NDSolve command and to plot the solution that it provides
using the Plot command. The Plot command can also graph the approximate
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solution (1.57). The graph is most informative if you overlay the numerical
solution and the approximate solution on the same axes for direct comparison.
I’ll illustrate in class how to do these things in Mathematica.

7. There are certain simple one-dimensional problems where the equation of
motion (Newton’s second law) can always be solved, or at least reduced to the
problem of doing an integral. One of these (which we have met a couple of
times in Chapter 2) is the motion of a one-dimensional particle subject to a
force that depends only on the velocity v, that is, F = F (v). (a) Write down
Newton’s second law and separate the variables by rewriting it as m dv

F (v)
= dt.

Now integrate both sides of this equation and show that

t = m

∫ v

v0

dv′

F (v′)
.

Provided you can do the integral, this gives t as a function of v. You can then
solve to give v as a function of t. (b) Use this method to solve the special case
that F (v) = F0, a constant force, and comment on your result. (c) Next, use
the same method to solve for the case in which a mass m has velocity v0 at
time t = 0 and coasts along the x axis in a medium where the drag force is
F (v) = −cv3/2. Find v in terms of the time t and the other given parameters.
At what time (if any) will the mass come to rest?

8. Show that if the net force on a one-dimensional particle depends only on
position, F = F (x), then Newton’s second law can be solved to find v as a
function of x given by

v2 = v2
0 +

2

m

∫ x

x0

F (x′)dx′.

Hint: use the chain rule to prove the following handy relation: If you regard
v as a function of x, then

v̇ =
dv

dx

dx

dt
= v

dv

dx
=

1

2

dv2

dx
.

Use the above relation to rewrite Newton’s second law in the separated form
m d(v2) = 2F (x) dx and then integrate from x0 to x. Comment on your
result in the case that F (x) is actually a constant. (You should recognize your
solution as a statement about kinetic energy and work.)

9. Use the method of Problem 7 to solve the following: A mass m is con-
strained to move along the x axis subject to a force F (v) = −F0e

v/V , where
F0 and V are constants. (a) Find v(t) if the initial velocity is v0 > 0 at time
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t = 0. (b) At what time does the mass come instantaneously to rest? (c) By
integrating v(t), you can find x(t). Do this and find how far the mass travels
before coming instantaneously to rest.

10. A basketball has mass m = 600 g and diameter D = 24 cm. (a) What is
its terminal speed in air? (b) If it is dropped from a 30 m tower, how long does
it take to hit the ground and how fast is it going when it does so? Compare
with the corresponding numbers in a vacuum.

11. Consider the complex number z = eiθ = cos θ+i sin θ. (a) By evaluating z2

two different ways, prove the trig identities cos 2θ = cos2 θ−sin2 θ and sin 2θ =
2 sin θ cos θ. (b) Use the same technique to find corresponding identities for
cos 3θ and sin 3θ.

12. A charged particle of mass m and positive charge q moves in uniform
electric and magnetic fields, E pointing in the y direction and B in the z di-
rection (an arrangement called “crossed E and B fields”). Suppose the particle
is initially at the origin and is given a kick at time t = 0 along the x axis with
vx = vx0 (positive or negative). (a) Write down the equation of motion for
the particle and resolve it into its three components. Show that the motion
remains in the plane z = 0. (b) Prove that there is a unique value of vx0, called
the drift speed vdr, for which the particle moves undeflected through the fields.
(This is the basis of velocity selectors, which select particles traveling at one
chosen speed from a beam with many different speeds.) Note that “unde-
flected” means that the velocity (vector) is constant. (c) Solve the equations
of motion to give the particle’s velocity as a function of t, for arbitrary values
of vx0. [Hint: The equations for (vx, vy) should look very much like Equations
(2.68) except for an offset of vx by a constant. If you make a change of vari-
ables of the form ux = vx − vdr and uy = vy, the equations for (ux, uy) will
have exactly the form (2.68), whose general solution you know.] (d) Integrate
the velocity to find the position as a function of t and sketch the trajectory
for various values of vx0. As a check on your answer, you should find for part
(d) that x = vdrt + R sinωt and y = R(cosωt − 1), where R = (vx0 − vdr)/ω
and ω = qB/m.

Remember online feedback at positron.hep.upenn.edu/q351

(extra credit on following pages)
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XC1*. Optional/extra-credit. Suppose that the basketball of Problem 10
is thrown from a height of 2 m with initial velocity v0 = 15 m/s at 45◦ above
the horizontal. (a) Use Mathematica (or some other system that you already
know) to solve the equations of motion (2.61) for the ball’s position (x, y) and
plot the trajectory. Also plot the corresponding trajectory in the absence of air
resistance. (b) Use your plot to find how far the ball travels in the horizontal
direction before it hits the floor. Compare with the corresponding range in a
vacuum.

XC2*. Optional/extra-credit. The equation (2.39) for the range of a
projectile in a linear medium cannot be solved analytically in terms of elemen-
tary functions. If you put in numbers for the several parameters, then it can
be solved numerically using Mathematica (or similar). To practice this, do
the following: Consider a projectile launched at angle θ above the horizontal
ground with initial speed v0 in a linear medium. Choose units such that v0 = 1
and g = 1. Suppose also that the terminal speed vter = 1. (With v0 = vter,
air resistance should be fairly important.) We know that in a vacuum, the
maximum range occurs at θ = π/4 ≈ 0.75. (a) What is the maximum range
in a vacuum? (b) Now solve (2.39) for the range in the given medium at the
same angle θ = 0.75. (c) Once you have your calculation working, repeat it for
some selection of values of θ within which the maximum range probably lies
— e.g. you could try θ = 0.4, 0.5, · · · , 0.8. (d) Based on these results, choose
a smaller interval for θ where you’re sure the maximum lies and repeat the
process. Repeat it again if necessary until you know the maximum range and
the corresponding angle to two significant figures. Compare with the vacuum
values.

Mathematica hints: I started this by typing in Equation (2.39) as it appears
in the book and giving this equation the name “eq1”. Since Mathematica’s
built-in functions and variables begin with capital letters, all of my own vari-
ables start with lowercase letters.

eq1 = (vy0 + vter)*r/vx0 + vter*tau*Log[1-r/(vx0*tau)]==0

Then I defined “eq2” to be the same equation with a few handy replacements,
using Mathematica’s ReplaceAll operator, whose shorthand is /. (slash dot),
which when I read it sounds like “such that.”

eq2 = eq1 /. {tau->vter/g, vx0->v0*Cos[th], vy0->v0*Sin[th]}

Then I defined “eq3” to be eq2 with a few more replacements:
eq3 = eq2 /. {v0->1, vter->1, g->1}

which Mathematica then writes as
Log[1 - r*Sec[th]] + r*Sec[th]*(1 + Sin[th]) == 0

To solve this for θ = 0.75, I do one more replacement and use the Solve func-
tion: Solve[eq3 /. th->0.75] which finds r = 0.499597, which you
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can check by plugging in numbers. (I take only the left-hand side of “eq3” by
taking the “First” element of the equation.)

First[eq3] /. {th->0.75, r->0.4996}

You can repeat the Solve step for other values of θ. You might also want to
check that using vter->1000 gives you approximately the range you calculated
(in these funny units) for part (a). By the way, if you are already a Mathe-
matica expert and you know a more straightforward (but still understandable
by a beginner) way of solving this problem, please send it to me!

XC3*. Optional/extra-credit. A ball is thrown with initial speed v0 up an
inclined plane. The plane is inclined at an angle φ above the horizontal, and
the ball’s initial velocity is at an angle θ above the plane. Choose axes with x
measured up the slope, y normal to the slope, and z across it. (a) Write down
Newton’s second law using these axes and find the ball’s position as a function
of time. (b) Show that the ball lands a distance R from its launch point,
where R = 2v2

0 sin θ cos(θ + φ)/(g cos2 φ). (c) Show that for a given v0 and φ,
the maximum possible range up the inclined plane is Rmax = v2

0/[g(1 + sinφ)].
(d) For level ground, it is well known that the maximum range occurs for
a projectile thrown at 45◦. Can you give a simple statement of what angle
corresponds to the maximum range for the projectile on an incline?

XC4*. Optional/extra-credit. A cannon shoots a ball at an angle θ above
the horizontal ground. (a) Neglecting air resistance, use Newton’s second law
to find the ball’s position as a function of time. (Use axes with x measured
horizontally and y measured vertically.) (b) Let r(t) denote the ball’s dis-
tance from the cannon. What is the largest possible value of θ if r(t) is to
increase throughout the ball’s flight? [Hint: Using your solution to part (a),
you can write down r2 = x2 + y2, and then find the condition that r2 is always
increasing.]

Remember online feedback at positron.hep.upenn.edu/q351
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