
Physics 351, Spring 2015, Homework #3.
Due at start of class, Friday, February 6, 2015

Course info is at positron.hep.upenn.edu/p351

When you finish this homework, remember to visit the feedback page at
positron.hep.upenn.edu/q351

to tell me how the homework went for you.

1. Problems 1 and 2 are (embarrassingly easy) problems from Chapter 2 that
I think are worth doing because they walk you through things that are worth
knowing about air resistance. (I forgot to include them on HW #1.) The
origin of the quadratic drag force on any projectile in a fluid is the inertia
of the fluid that the projectile sweeps up. (a) Assuming the projectile has
a cross-sectional area A (normal to its velocity) and speed v, and that the
density of the fluid is ρ, show that the rate at which the projectile encounters
fluid (mass/time) is ρAv. (b) Making the simplifying assumption that all of
this fluid is accelerated to the speed v of the projectile, show that the net
drag force on the projectile is ρAv2. (c) More realistically, as it turns out, the

force takes the form fquad = κρAv2 where κ < 1 depends on the shape of the

projectile. Show that the boxed equation reproduces fquad = cv2 = γD2v2,
where the density of air at STP is ρ = 1.29 kg/m3 and given that κ = 1/4 for
a sphere. Check that you reproduce the textbook’s value γ = 0.25 N · s2/m4.

2. (a) The origin of the linear drag force on a sphere in a fluid is the viscosity
of the fluid. According to Stokes’s law, the viscous drag on a sphere is flin =
3πηDv where η is the viscosity1 of the fluid, D is the sphere’s diameter, and v
its speed. Given the viscosity of air at STP, η = 1.7×10−5 N · s/m2, show that
this expression reproduces flin = bv = βDv, where β = 1.6 × 10−4 N · s/m2.
(b) The quadratic drag force on a moving sphere in a fluid is given by the boxed
equation in Problem 1. Show that the ratio of drag forces can be written as
fquad/flin = R/48, where the dimensionless Reynolds number2 is R = Dvρ/η,
where ρ is the fluid’s density. Clearly the Reynolds number is a measure of
the relative importance of the two kinds of drag.

1To define viscosity η, imagine a wide channel along which fluid is flowing (x direction)
such that the velocity v is zero at the bottom (y = 0) and increases toward the top (y = h),
so that successive layers of fluid slide across one another with a velocity gradient dv/dy.
The force F with which an area A of any one layer drags the fluid above it is proportional
to A and to dv/dy, and η is defined as the constant of proportionality: F = ηAdv/dy.

2The factor 1/48 is for a sphere.
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3. (a) Verify the expression (Eq. 4.59) for the potential energy of the cube
balanced on a cylinder in Example 4.7 (page 130). [Hint: To understand the
rθ factor, imagine the cylinder rolling on the cube.] (b) Make graphs of U(θ)
for b = 0.9r and b = 1.1r, preferably by computer. (For simplicity, choose
units such that r, m, and g all equal 1.) (c) Use your graphs to confirm the
findings of Example 4.7 concerning the stability of the equilibrium at θ = 0.
Are there any other equilibrium points, and are they stable?

4. An interesting one-dimensional system is the simple pendulum, consisting
of a point mass m fixed to the end of a massless rod (length l), as shown in
the left figure below. The pendulum’s position can be specified by its angle φ
from the equilibrium position. (a) Prove that the pendulum’s potential energy
is U(φ) = mgl(1 − cosφ). Then write down the total energy E as a function
of φ and φ̇. (b) Show that requiring the total energy E to be independent
of time (dE/dt = 0) gives the equation of motion for φ, and that this EOM
is just the familiar Γ = Iα, where Γ is torque, I is moment of inertia, and
α = φ̈. (c) Assuming that φ(t) � 1, solve for φ(t) and show that the motion
is periodic with period τ0 = 2π

√
l/g.

5. A metal ball (mass m) with a hole through it is threaded on a frictionless
vertical rod. A massless string (total length l) attached to the ball runs over a
massless, frictionless pulley and supports a block of mass M , as shown in the
right figure above. The positions of the two masses can be specified by the one
angle θ. (a) Write down the potential energy U(θ). (To get U(θ), eliminate
heights H and h in favor of θ, b, and l, assuming the pulley and ball have
negligible size.) (b) By differentiating U(θ), find whether the system has an
equilibrium position, and for what values of m and M equilibrium can occur.
Discuss the stability of any equiibrium positions.

6. Section 4.8 claims that a force ~F (~r) that is central and spherically sym-

phys351/hw03.tex page 2 of 6 2015-01-28 14:19



metric is automatically conservative. Here are two ways to prove it. (a) Since
~F (~r) is central and spherically symmetric, it must have the form ~F (~r) = f(r)r̂.

Using Cartesian coordinates, show that this implies that ∇× ~F = 0. (b) Even

quicker, using the expression given inside the textbook’s back cover for ∇× ~F
in spherical polar coordinates, show that ∇× ~F = 0.

7. Problem 6 suggests two proofs that a central, spherically symmetric force
is automatically conservative, but neither proof makes really clear why this is
so. Here is a proof that is less complete but more insightful. Consider any two
points A and B and two different paths ACB and ADB connecting them, as
shown in the left figure below. Path ACB goes radially out from A until it
reaches the radius rB of B, and then around a sphere (center O) to B. Path
ADB goes around a sphere of radius rA until it reaches the line OB, and then
radially out to B. Explain clearly why the work done by a central, spherically
symmetric force ~F is the same along both paths. (This doesn’t prove that
the work is the same along any two paths from A to B. If you want you can
complete the proof by showing that any path can be approximated by a series
of paths moving radially in or out, combined with paths of constant r.)

8. Consider the Atwood machine shown in the right figure above, where
the pulley has radius R and moment of inertia I. (a) Write down the total
energy of the two masses and the pulley in terms of the coordinate x and ẋ.
(Remember the K.E. of the spinning wheel.) (b) Show (as is true for any
conservative one-dimensional system) that you can obtain the EOM for x by
differentiating the equation E = const. Check that the EOM is the same
as you would obtain by applying Newton’s second law separately to the two
masses and the pulley, and then eliminating the two unknown tensions from
the three resulting equations. (This problem seems to be hinting toward the
notion that writing down expressions for energies can lead us straightforwardly
to the equations of motion — as we’ll see in the Lagrangian formulation.)
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9. A mass m moves in a circular orbit (centered on the origin) in the field
of an attractive central force with potential energy U = krn. (a) Prove the
virial theorem, that T = nU/2. (b) What does the virial theorem (assuming
that it generalizes beyond circular orbits) imply for n = −1 (the gravitational
Kepler problem) and for n = 2 (the harmonic-oscillator problem)?

10. A chain of mass M and length L is suspended vertically with its lowest
end just barely touching a scale. The chain is released and falls onto the scale.
What is the reading on the scale when a length x of the chain has fallen?
[Hint: The reading on the scale equals the normal force exerted by the scale
on the chain. Consider the motion of the center-of-mass of the chain. The
maximum reading is 3Mg.]

11. A block of mass m slides on a frictionless (horizon-
tal) table and is constrained to move along the inside
of a ring of radius R, which is fixed to the table. At
t = 0 the mass is moving (tangentially) along the inside
of the ring with velocity v0. The coefficient of kinetic
friction between the block and ring is µ. Find the ve-
locity ṡ and position s (the arc length traveled) of the
block as a function of time.

12. The potential energy of a one-dimensional mass m at a distance r from
the origin is

U(r) = U0

(
r

R
+ λ2R

r

)
for 0 < r <∞, with U0, R, and λ all positive constants. Find the equilibrium
position r0. Let x be the distance from equilibrium and show that, for small x,
the PE has the form U = const.+ 1

2
kx2. What is the natural angular frequency

ω0 for small oscillations?

13. Another interpretation of the Q of a resonance comes from the following:
Consider the motion of a driven damped oscillator after any transients have
died out, and suppose that it is being driven close to resonance, so that you can
set ω = ω0. (a) Show that the oscillator’s total energy (T+U) is E = 1

2
mω2A2.

(b) Show that the energy ∆Edis dissipated during one cycle by the damping
force Fdamp is 2πmβωA2. (Remember power is Fv.) (c) Hence show that Q is
2π times the ratio E/∆Edis.

14. You can make the Fourier series solution for a periodically driven oscillator
a bit tidier if you don’t mind using complex numbers. Obviously the periodic
force of (Eq. 5.90) can be written as f = Re(g), where the complex function
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g is g(t) =
∑∞

n=0 fne
inωt. Show that the real solution for the oscillator’s

motion can likewise be written as x = Re(z), where z(t) =
∑∞

n=0Cne
inωt

and Cn = fn/(ω
2
0 − n2ω2 + 2iβnω). This solution avoids our having to worry

about the real amplitude An and phase shift δn separately.

15. Show that the path y = y(x) for which the integral
∫ x2

x1
x
√

1− (y′)2 dx is
stationary is an arcsinh function.

16. Find the path y = y(x) for which the integral
∫ x2

x1

√
x
√

1 + (y′)2 dx is
stationary.

Remember online feedback at positron.hep.upenn.edu/q351

XC1*. Optional/extra-credit. [Computer] Consider the simple pendulum
of Problem 4. You can get an expression for the pendulum’s period (good for
both large and small oscillations) using the method of (Eq. 4.57), as follows:
(a) Using U(φ) = mgl(1−cosφ), find φ̇ as a function of φ. Next use t =

∫
dφ/φ̇

to write the time for the pendulum to travel from φ = 0 to its maximum value
Φ, and use this to show that the period of oscillation is

τ =
τ0

π

∫ Φ

0

dφ√
sin2(Φ/2)− sin2(φ/2)

=
2τ0

π

∫ 1

0

du√
1− u2

√
1− A2u2

where τ0 = 2π
√
l/g. (Use substitution sin(φ/2) = Au, where A = sin(Φ/2).)

These integrals cannot be evaluated in terms of elementary functions, but the
second integral is a standard integral called the complete elliptic integral of
the first kind, sometimes denoted K(A2), whose values can be looked up or
calculated with Mathematica’s EllipticK(A2). (b) Use Mathematica (or your
favorite software) to make a graph of τ/τ0 vs. amplitude Φ, for 0 ≤ Φ ≤ 3
radians and comment. Explain what happens to τ (and why!) as Φ→ π.

XC2*. Optional/extra-credit. If you have not already done so, do XC1(a).
(a) If the amplitude Φ is small, then so isA = sin(Φ/2). If the amplitude is very
small, we can simply ignore the last square root in the integral in (XC1). Show
that this gives the familiar result τ = τ0 = 2π

√
l/g. (b) If the amplitude is

small but not very small, we can improve on the approximation of part (a). Use
the binomial expansion to give the approximation 1/

√
1− A2u2 ≈ 1 + 1

2
A2u2

and show that, in this limit, τ ≈ τ0[1 + 1
4

sin2(Φ/2)]. (c) What percentage
correction does the second term represent for an amplitude of 45◦? (The exact
answer for Φ = 45◦ is 1.040 τ0 to four significant figures.)
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XC3*. Optional/extra-credit. A ring of mass M hangs from a thread, and
two beads of mass m slide on it without friction, as shown in the left figure
below. The beads are released simultaneously from rest (given an infinitesimal
kick) at the top of the ring and slide down opposite sides. Show that the ring
will start to rise if m > 3

2
M , and find the angle θ at which this occurs. [Hint:

If M = 0, then cos θ = 2
3
.] You will receive partial extra-credit if you do the

problem assuming M = 0, but for full credit, you must account for the mass
M of the ring.

XC4*. Optional/extra-credit. The right figure above shows a massless
wheel of radius R, mounted on a frictionless horizontal axle. A point mass M
is glued to the edge of the wheel, and a mass m hangs from a string wrapped
around the perimeter of the wheel. (a) Write down the total PE of the two
masses as a function of the angle φ. (b) Use this to find the values of m/M
for which there are any positions of equilibrium. Describe the equilibrium
positions, discuss their stability, and explain your answers in terms of torques.
(c) Graph U(φ) for the cases m = 0.7M and m = 0.8M , and use your graphs
to describe the behavior of the system if I release it from rest at φ = 0. (If
the system oscillates, you do not need to find the frequency of oscillation.)
(d) Find the critical value of m/M such that if m

M
< ( m

M
)crit, the system

oscillates, while if m
M
> ( m

M
)crit it does not (if released from rest at φ = 0).

XC5*. Optional/extra-credit. Repeat the calculations of Example 5.3
(page 185) with all the same parameters, but with the initial conditions x0 = 2
and v0 = 0. Graph x(t) for 0 ≤ t ≤ 4 and compare with the graph of
Example 5.3. Explain the similarities and differences, e.g. for what region in
time do the two graphs differ appreciably?

Remember online feedback at positron.hep.upenn.edu/q351

phys351/hw03.tex page 6 of 6 2015-01-28 14:19


