
Physics 351, Spring 2015, Homework #5.
Due at start of class, Friday, February 20, 2015

Course info is at positron.hep.upenn.edu/p351

When you finish this homework, remember to visit the feedback page at
positron.hep.upenn.edu/q351

to tell me how the homework went for you.

1. Using the usual angle φ as a generalized coordinate, write down the La-
grangian for a simple pendulum of length l suspended from the ceiling of an
elevator that is accelerating upward with constant acceleration a. (Be careful
when writing T . It is probably safest to write the bob’s velocity in component
form.) Find the Lagrange EOM and show that it is the same as that for a
normal, nonaccelerating pendulum, except that g has been replaced by g + a.
In particular, the angular frequency of small oscillations is

√
(g + a)/l.

2. Consider a double Atwood machine constructed as follows: A mass 4m
is suspended from a string that passes over a massless pulley on frictionless
bearings. The other end of this string supports a second similar pulley, over
which passes a second string supporting a mass of 3m at one end and m at
the other. Using two suitable generalized coordinates, set up the Lagrangian
and find the acceleration of the mass 4m when the system is released. Explain
why the top pulley rotates even though it carries equal weights on each side.

3. The figure shows a simple pendulum (mass m,
length l) whose point of support P is attached to the
edge of a wheel (center O, radius R) that is forced to
rotate at a fixed angular velocity ω. At t = 0, the
point P is level with O on the right. Write down the
Lagrangian and find the EOM for the angle φ. [Hint:
Be careful writing down T , the K.E. A safe way to get
the velocity right is to write down the position of the
bob at time t, and then differentiate.] Check that your
answer makes sense in the special case ω = 0.

4. A simple pendulum (mass M and length L) is suspended from a cart (mass
m) that can oscillate on the end of a spring (spring constant k), as shown in
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the left figure below. (a) Write the Lagrangian in terms of the two generalized
coordinates x and φ, where x is the extension of the spring from its equilibrium
length. Find the two Lagrange equations. (They’re ugly.) (b) Simplify the
equations to the case that both x and φ are small. (They’re still pretty ugly,
and still coupled, but we’ll solve them in Chapter 11.)

5. The above-right figure is a bird’s-eye view of a smooth horizontal wire hoop
that is forced to rotate at a fixed angular frequency ω about a vertical axis
through the point A. A bead of mass m is threaded on the hoop and is free
to move around it, with its position specified by the angle φ that it makes at
the center with the diameter AB. Find the Lagrangian for this system using
φ as your generalized coordinate. Use the Lagrange EOM to show that the
bead oscillates about the point B exactly like a simple pendulum. What is
the frequency of these oscillations if their amplitude is small?

6. Consider the cube balanced on a cylinder, as de-
scribed in Example 4.7 (page 130). (Immobile cylinder
of radius r. Cube of side 2b can rock but can’t slip.
U(θ) = mg[(r + b) cos θ + rθ sin θ].) Assuming that
b < r, use the Lagrangian approach to find the angu-
lar frequency of small oscillations about the top. The
simplest procedure is to make the small-angle approxi-
mations to L before you differentiate to get Lagrange’s
equation. As usual, be careful in writing down the ki-
netic energy, which is 1

2
(mv2+Iθ̇2), where v is the speed

of the CM and I = 2mb2/3 is the moment of inertia
about the CM. The safe way to find v is to write down
the coordinates of the CM and then differentiate.
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7. A pendulum is made from a massless spring (force constant k and un-
stretched length l0) that is suspended at one end from a fixed pivot O and
has a mass m attached to its other end. The spring can stretch and compress
but cannot bend, and the whole system is confined to a single vertical plane.
(a) Write down the Lagrangian for the pendulum, using as generalized coor-
dinates the usual angle φ and the length r of the spring. (b) Find the two
Lagrange equations of the system and interpret them in terms of Newton’s
second law (Eq. 1.48), Fr = m(r̈ − rφ̇2) and Fφ = m(rφ̈ + 2ṙφ̇). (c) The
equations of part (b) cannot be solved analytically in general, but they can
be solved for small oscillations. Do this and describe the motion. [Hint: Let
l describe the equilibrium length of the spring with the mass hanging from it
and write r = l + ε. “Small oscillations” involve only small values of ε and φ,
so you can use the small-angle approximations and drop from your equations
all terms that involve powers of ε or φ (or their derivatives) higher than the
first power (also products of ε and φ or their derivatives). This dramatically
simplifies and uncouples the equations.

8. A mass m1 rests on a frictionless horizontal table. Attached to it is a
string which runs horizontally to the edge of the table, where it passes over
a frictionless, small pulley and down to where it supports a mass m2. Use as
coordinates x and y the distances of m1 and m2 from the pulley. These satisfy
the constraint equation f(x, y) = x+ y = const. Write down the two modified
Lagrange equations and solve them (together with the constraint equation) for
ẍ, ÿ, and the Lagrange multiplier λ. Use (Eq. 7.122) (and the corresponding
equation in y) to find the tension forces on the two masses. Verify your answers
by solving the problem by the elementary Newtonian approach.

9. This is a repeat of HW3/XC3, but now it is a required problem, which you
can solve using the Lagrangian approach. But you’ll need to use a Lagrange
multiplier so that you can solve for the force of constraint imposed by the
thread. The trick is to write a Lagrangian having two coordinates: θ (as
indicated on the left figure below) and Y , the vertical position of the ring. You
then include a Lagrange multiplier term λY to enforce the Y = 0 constraint
(which also implies Ẏ = 0 and Ÿ = 0), as described in §7.10. “The ring will
start to rise” implies λ = 0, i.e. the tension in the string is zero. There are
actually two solutions for λ = 0, whose meaning you should interpret (even
though only one of the two solutions describes the rings’ starting to rise).
Here’s the problem as previously stated: A ring of mass M hangs from a
thread, and two beads of mass m slide on it without friction, as shown in the
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figure. The beads are released simultaneously from rest (given an infinitesimal
kick) at the top of the ring and slide down opposite sides. Show that the ring
will start to rise if m > 3

2
M , and find the angle θ at which this occurs. [Hint:

If M = 0, then cos θ = 2
3
.] One more hint: you will probably find it helpful to

use energy conservation (after imposing Y ≡ 0) to write θ̇ in terms of cos θ.

10. Two equal masses m, connected by a massless string, hang over two
pulleys (of negligible size), as shown in the above-right figure. The left mass
moves in a vertical line, but the right mass is free to swing back and forth in
the plane of the masses and pulleys. Find the EOM for r and θ, as shown.
Assume that the left mass starts at rest, and the right mass undergoes small
oscillations with angular amplitude ε (ε � 1). What is the initial average
acceleration (averaged over a few periods) of the left mass? In which direction
does it move?

11. A spring with spring constant k and relaxed length zero lies along a spoke
of a massless wheel of radius R. One end of the spring is attached to the
center, and the other end is attached to a mass m that is free to slide along
the spoke. When the system is in its equilibrium position with the spring
hanging vertically, how far (in terms of R) should the mass hang down (you
are free to adjust k) so that for small oscillations, the frequency of the spring
oscillations equals the frequency of the rocking motion of the wheel? Assume
that the wheel rolls without slipping.

Remember online feedback at positron.hep.upenn.edu/q351

XC1*. Optional/extra-credit. Two equal masses, m1 = m2 = m, are
joined by a massless string of length L that passes through a hole in a friction-
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less horizontal table. The first mass slides on the table while the second hangs
below the table and moves up and down in a vertical line. (a) Assuming the
string remains taut, write down the Lagrangian for the system in terms of the
polar coordinates (r, φ) of the mass on the table. (b) Find the two Lagrange
equations and interpret the φ equation in terms of the angular momentum
` of the first mass. (c) Express φ̇ in terms of ` and eliminate φ̇ from the r
equation. Now use the r equation to find the value r = r0 at which the first
mass can move in a circular path. Interpret your answer in Newtonian terms.
(d) Suppose the first mass is moving in this circular path and is given a small
radial nudge. Write r(t) = r0 + ε(t) and rewrite the r equation in terms of ε(t)
dropping all powers of ε(t) higher than linear. Show that the circular path is
stable and that r(t) oscillates sinusoidally about r0. What is the frequency of
its oscillations?

XC2*. Optional/extra-credit. In Problem 3, one might expect that the
rotation of the wheel would have little effect on the pendulum, provided the
wheel is small and rotates slowly. (a) Verify this expectation by solving the
EOM numerically, with the following numbers: Take g = l = 1 (so the nat-
ural frequency

√
g/l is also 1). Take ω = 0.2, so that the wheel’s rotational

frequency is small compared to the natural frequency of the pendulum; and
take the radius R = 0.2, significantly less than the length of the pendulum.
As initial conditions take φ = 0.2 and φ̇ = 0 at t = 0, and make a graph of
your solution φ(t) for 0 < t < 20. Your graph should resemble the sinusoidal
oscillations of an ordinary simple pendulum. Does the period look correct?
(b) Now graph φ(t) for 0 < t < 100 and notice that the rotating support does
make a small difference, causing the amplitude of the oscillations to grow and
shrink periodically. Comment on the period of these small fluctuations.

XC3*. Optional/extra-credit. In Example 7.7 (page 264), we saw that the
bead on a spinning hoop can make small oscillations about its nonzero stable
equilibrium points that are approximately sinusoidal, with frequency (as in
Eq. 7.80) Ω′ =

√
ω2 − g2/(ωR)2. Investigate how good this approximation

is by solving the EOM (Eq. 7.73) numerically and then plotting both your
numerical solution and the approximate solution θ(t) = θ0 + A cos(Ω′t − δ)
on the same graph. Use the following numbers: g = R = 1 and ω2 = 2, and
initial conditions θ̇(0) = 0 and θ(0) = θ0 + ε0, where ε0 = 1◦. Repeat with
ε0 = 10◦. Comment on your results.
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XC4*. Optional/extra-credit. The standard pen-
dulum frequency

√
g/` holds only for small oscillations.

The frequency becomes smaller as the amplitude grows.
It turns out that if you want to build a pendulum whose
frequency is independent of the amplitude, you should
hang it from the cusp of a cycloid of a certain size,
as shown in the figure. As the string wraps partially
around the cycloid, the effect is to decrease the length
of string in the air, which in turn increases the fre-
quency back up to a constant value. In more detail:

A cycloid is the path taken by a point on the rim of a rolling wheel. The
upside-down cycloid in the figure can be parametrized by (x, y) = R(θ −
sin θ,−1 + cos θ), where θ = 0 corresponds to the cusp. Consider a pendulum
of length 4R hanging from the cusp, and let α be the angle the string makes
w.r.t. vertical, as shown.

(a) In terms of α, find the value of the parameter θ associated with the point
where the string leaves the cycoid.

(b) In terms of α, find the length of string touching the cycoid.

(c) In terms of α, find the Lagrangian.

(d) Show that the quantity sinα undergoes simple harmonic motion with fre-
quency

√
g/(4R), independent of the amplitude.

(e) In place of parts (c) and (d), solve the problem again by using F = ma.
This actually gives a much quicker solution!

Remember online feedback at positron.hep.upenn.edu/q351
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