
Physics 351, Spring 2015, Homework #7.
Due at start of class, Friday, March 6, 2015

Course info is at positron.hep.upenn.edu/p351

When you finish this homework, remember to visit the feedback page at
positron.hep.upenn.edu/q351

to tell me how the homework went for you.

1. Two particles whose reduced mass is µ interact via a potential energy
U = 1

2
kr2, where r is the distance between them. (a) Make a sketch showing

U(r), the centrifugal potential energy Ucf(r), and the effective potential energy
Ueff(r). (Treat the angular momentum ` as a known, fixed constant.) (b) Find
the “equilibrium” separation r0, the distance at which the two particles can
circle each other with constant r. (c) By Taylor-expanding Ueff(r) to order
(r− r0)2, find the frequency of small oscillations about the circular orbit if the
particles are disturbed slightly from the “equilibrium” separation r0.

2. Consider a particle of reduced mass µ orbiting in a central force with
U = krn where kn > 0. (a) Explain what the condition kn > 0 tells us about
the force. Sketch the effective potential energy Ueff for the cases that n = 2,
n = −1, and n = −3. (b) Find the radius r0 at which the particle (with given
angular momentum `) can orbit at a fixed radius. For what values of n is this
circular orbit stable? Do your sketches confirm this conclusion? (c) For the
stable case, show that the period of small oscillations about the circular orbit
is τosc = τorb/

√
n+ 2. Argue that if

√
n+ 2 is a rational number, these orbits

are closed. Sketch them for the cases that n = 2, n = −1, and n = 7.

3. We have proved in (Eq. 8.49) that any Kepler orbit can be written in
the form r(φ) = c/(1 + ε cosφ), where c > 0 and ε ≥ 0. For the case that
0 ≤ ε < 1, rewrite this equation in rectangular coordinates (x, y) and prove
that the equation can be cast in the form

(x+ d)2

a2
+
y2

b2
= 1

with a = c/(1− ε2), b = c/
√

1− ε2, and d = aε.

4. Here is a more general form of the virial theorem that applies to any periodic
orbit of a particle. (a) Find the time derivative of the quantity G = ~r · ~p and,
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by integrating from time 0 to t, show that

G(t)−G(0)

t
= 2 〈T 〉+

〈
~F · ~r

〉
where ~F is the net force on the particle and 〈f〉 denotes the average over time
of any quantity f . (b) Explain why, if the particle’s orbit is periodic and we
make t sufficiently large, we can make the left-hand side of this equation as
small as we please. That is, the LHS→ 0 as t→∞. (c) Use this result to prove

that if ~F comes from the potential energy U = krn, then 〈T 〉 = (n/2) 〈U〉, if
now 〈f〉 denotes the time average over a very long time.

5. An earth satellite is observed at perigee to be 250 km above the earth’s
surface and traveling at about 8500 m/s. Find the eccentricity of its orbit and
its height above the earth’s surface at apogee. Useful data: the earth’s radius
is Re ≈ 6.4× 106 m, and GMe/R

2
e = g.

6. A particle of mass m moves with angular momentum ` in the field of a
fixed force center with

F (r) = − k
r2

+
λ

r3

where k > 0 and λ > 0. (a) Write down the transformed radial equation

u′′(φ) = −u(φ)− µ

`2 u(φ)2
F

(Eq. 8.41) and prove that the orbit has the form

r(φ) =
c

1 + ε cos(βφ)

where c, β, and ε are positive constants. (b) Find c and β in terms of the
given parameters, and describe the orbit for the case that 0 < ε < 1. (c) For
what values of β is the orbit closed? What happens to your results as λ→ 0?

7. At time t0 a comet is observed at radius r0 traveling with speed v0 at an
acute angle α to the line from the comet to the sun. Put the sun at the origin
O, with the comet on the x axis (at t0) and its orbit in the xy plane, and
then show how you could calculate the parameters of the orbital equation in
the form r = c/[1 + ε cos(φ − δ)]. Do so for the case that r0 = 1.0 × 1011 m,
v0 = 45 km/s, and α = 50◦. [The sun’s mass is about 2.0 × 1030 kg, and
G = 6.67× 10−11 N m2

kg2 .]
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8. A particle travels in a parabolic orbit in a planet’s gravitational field and
skims the surface at its closest approach. The (spherical) planet has uniform
mass density ρ. Relative to the center of the planet, what is the angular
velocity of the particle as it skims the surface?

9. The derivation of mr̈ = F + 2mṙ × Ω + m(Ω × r) × Ω (Eq. 9.34), for
Newton’s 2nd law in a rotating frame, assumes that angular velocity Ω is
constant. Show that if Ω̇ 6= 0 then there is a third “fictitious force,” sometimes
called the azimuthal force, on the RHS of (9.34) equal to mr× Ω̇.

10. In this problem you will prove (Eq. 9.34) using the Lagrangian approach.
As usual, the Lagrangian method is in many ways easier than the Newtonian
(except for some vector gymnastics), but is perhaps less insightful. Let S be
a noninertial frame rotating with constant angular velocity Ω relative to the
inertial frame S0. Let both frames have the same origin, O = O0. (a) Find
L = T−U in terms of the coordinates r and ṙ of S. [Remember first to evaluate
T in the inertial frame. Remember also that v0 = v + Ω× r.] (b) Show that
the three Lagrange equations reproduce (9.34) precisely.

11. On a certain spherically-symmetric planet, the free-fall acceleration has
magnitude g = g0 at the north pole and g = λg0 (with 0 ≤ λ ≤ 1) at the
equator. Find g(θ), the free-fall acceleration at colatitude θ as a function of θ.

12. The center of a long frictionless rod is pivoted at the origin and the rod is
forced to rotate at a constant angular velocity Ω in a horizontal plane. Write
down the EOM for a bead that is threaded on the rod, using the coordinates
x and y of a frame that rotates with the rod (with x along the rod and y
perpendicular to it). Solve for x(t). What is the role of the centrifugal force?
What of the Coriolis force? (How do the normal force and the Coriolis force
relate to one another?)

13. A particle of mass m is confined to move, without friction, in a vertical
plane, with axes x horizontal and y vertically up. The plane is forced to rotate
with constant angular velocity Ω about the y axis. Find the equations of
motion for x and y, solve them, and describe the possible motions.

Remember online feedback at positron.hep.upenn.edu/q351
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XC00*. Optional/extra-credit. If there are extra-credit problems from
HW4,5,6 that you didn’t have time to do sooner, you can feel free to turn
them in with HW7 for full credit. Just clearly indicate for Tanner which
problem you’re solving.

XC1*. Optional/extra-credit. Sometimes in the Calculus of Variations we
want to extremize an integral subject to the constraint that another integral
have a given (constant) value. Any such problem is called an isoperimetric
problem. (See e.g. Mary Boas, 3ed, §9.6.) The original and most famous
example is Queen Dido’s Problem: of all the closed plane curves of a given
perimeter, which one encloses the largest area? To solve this problem, we
must maximize the area,

∫
y dx, subject to the condition that the arc length∫

ds has the given value `. Let

I =

∫ x2

x1

F (x, y, y′) dx

be the integral we want to make stationary, while the integral (with same
integration variable and same limits)

J =

∫ x2

x1

G(x, y, y′) dx

is to have a given constant value. (So the allowed varied paths must be paths
for which J has the given value.) Using the Lagrange multiplier method, it
can be shown that ∫ x2

x1

(F (x, y, y′) + λG(x, y, y′)) dx

should be stationary, i.e. that F + λG should satisfy the Euler-Lagrange
equation, where the Lagrange multiplier λ is a constant. Using F = y and
G =

√
1 + (y′)2, show that the solution to Queen Dido’s problem is an arc of

a circle, (x+ c)2 + (y + c′)2 = λ2, passing through the two given points.

XC2*. Optional/extra-credit. A uniform flexible chain of given length
is suspended at given points (x1, y1) and (x2, y2). Using the “isoperimetric”
method of Problem XC1, find the curve y(x) that minimizes the chain’s gravi-
tational potential energy, subject to the constraint that its length be the given
value. You will find a catenary (cosh) that looks like the solution to hw04/q8
but with a vertical offset: y = y0 + C cosh((x − x0)/C), which makes more
physical sense than without the offset y0.
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XC3*. Optional/extra-credit. Consider a particle with mass m and angu-
lar momentum ` in the field of a central force F = −k/r5/2. To simplify your
equations, choose units for which m = ` = k = 1. (a) Find the value r0 at
which Ueff is minimum and make a graph of Ueff(r) for 0 < r ≤ 5r0. (Choose
your scale so that your graph shows the interesting part of the curve.) (b) As-
suming now that the particle has energy E = −0.1, find an accurate value of
rmin, the particle’s distance of closest approach to the force center. (Use e.g.
Mathematica to solve the relevant equation numerically.) (c) Assuming that
the particle is at r = rmin when φ = 0, use (e.g.) NDSolve in Mathematica to
solve the transformed radial equation (Eq. 8.41)

u′′(φ) = −u(φ)− µ

`2 u(φ)2
F

and find the orbit in the form r = r(φ) for 0 ≤ φ ≤ 7π. Graph the orbit. Does
it appear to be closed?

XC4*. Optional/extra-credit. A particle moves in a potential given by
U(r) = −U0e

−λ2r2 . (a) Given the angular momentum `, find the radius of the
stable circular orbit. An implicit equation is fine. (b) It turns out that if ` is
too large, then no circular orbit exists. What is the largest value of ` for which
a circular orbit does in fact exist? If r0 is the radius of the circle in this cutoff
case, what is the value of Ueff(r0)? (c) To check that your answer for part (b)
makes sense, make a graph of Ueff(r) for ` slightly smaller than `max and for
` slightly larger than `max, and interpret the condition for the existence of a
stable circular orbit.

XC5*. Optional/extra-credit. A particle of mass m moves with angular
momentum ` about a fixed force center with F (r) = k/r3 where k can be
positive or negative. (a) Sketch the effective potential energy Ueff for various
values of k and describe the various possible kinds of orbit. (b) Write down
and solve the transformed radial equation (8.41)

u′′(φ) = −u(φ)− µ

`2 u(φ)2
F

and use your solutions to confirm your predictions from part (a).

XC6*. Optional/extra-credit. Consider the motion of two particles sub-
ject to a repulsive inverse-square force (for example, two positive charges).
Show that this system has no states with E < 0 (as measured in the CM
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frame), and that in all states with E > 0, the relative motion follows a hyper-
bola. Sketch a typical orbit. [You can follow closely the analysis of §8.6-8.7
except that you must reverse the force. Probably the simplest way to do this
is to change the sign of γ in (Eq. 8.44) and all subsequent equations (so that
F (r) = +γ/r2) and then keep γ itself positive. Assume ` 6= 0.]

XC7*. Optional/extra-credit. A spacecraft in a circular orbit wishes
to transfer to another circular orbit of one-quarter the radius by means of a
tangential thrust to move into an elliptical orbit and a second tangential thrust
at the opposite end of the ellipse to move into the desired circular orbit. (The
picture looks like Figure 8.13 but run backwards.) Find the thrust factors
required and show that the speed in the final orbit is two times greater than
the initial speed.

Remember online feedback at positron.hep.upenn.edu/q351
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