
Physics 351, Spring 2015, Homework #9.
Due at start of class, Friday, March 27, 2015

Course info is at positron.hep.upenn.edu/p351

When you finish this homework, remember to visit the feedback page at
positron.hep.upenn.edu/q351

to tell me how the homework went for you.

1. A high-speed train is traveling at a constant 150 m/s (about 335 mph) on
a straight, horizontal track across the South Pole. Find the angle between a
plumb line suspended from the ceiling inside the train and another inside a
hut on the ground. In what direction is the plumb line on the train deflected?

2. If a negative charge −q (an electron, for example) in an elliptical orbit
around a fixed positive charge Q is subjected to a weak uniform magnetic field
B, the effect of B is to make the ellipse precess slowly — an effect known
as Larmor precession. To prove this, write down the EOM of the negative
charge in the field of Q and B. Now rewrite it for a frame rotating with
angular velocity Ω. [Remember that this changes both d2r/dt2 and dr/dt.]
Show that by suitable choice of Ω you can arrange that the terms involving
ṙ cancel out, but that you are left with one term involving B × (B × r). If
B is weak enough this term can certainly be neglected. Show that in this
case the orbit in the rotating frame is an ellipse (or hyperbola). Describe the
appearance of the ellipse as seen in the original nonrotating frame.

3. A mass is dropped from a point directly above the equator. Consider the
instant when the object has fallen a distance d. (a) If we consider only the
centrifugal force, then you can quickly show that the correction to the effective
g at this point (relative to the release point) is an increase by Ω2d. (b) There is,
however, a second-order Coriolis effect. What is the sum of these corrections?
(c) The value of g0 also varies with height, and this produces an increase in the
effective g equal to (2d/R)g0. Show that this is much larger than the above
centrifugal and Coriolis effects.
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4. A hoop of radius R is made to rotate at constant
angular speed ω around a diameter, as shown in the
figure. A small bug of mass m walks at constant angu-
lar speed Ω around the hoop. Let F be the total force
that the hoop applies to the bug when the bug is at the
angle θ shown, and let F⊥ be the component of F that
is perpendicular to the plane of the hoop. Find F⊥ in
two ways (ignore gravity in this problem): (a) Work in
the lab frame: at the angle θ, find the rate of change of
the bug’s angular momentum around the rotation axis,
and then consider the torque on the bug. (b) Work in
the rotating frame of the hoop: at the angle θ, find the
relevant fictitious force, and then take it from there.

5. Consider a frictionless puck on a horizontal turntable that is rotating
counterclockwise with angular velocity Ω. (a) Write down Newton’s second
law for the coordinates x and y of the puck as seen by me standing on the
turntable. (Be sure to include the centrifugal and Coriolis forces corresponding
to the turntable’s rotation, but ignore the earth’s rotation.) (b) Solve the two
equations by the trick of writing η = x + iy and guessing a solution of the
form η = e−iαt. [In this case — as in the case of the critically damped SHM
in §5.4 — you get only one solution this way. The other has the same form
(Eq. 5.43) we found for the second solution for the critically damped SHM.]
Write down the general solution. (c) At time t = 0, I push the puck from
position r0 = (x0, 0) with velocity v0 = (vx0, vy0) (all as measured by me on
the turntable). Show that

x(t) = (x0 + vx0t) cos Ωt+ (vy0 + Ωx0)t sin Ωt

y(t) = −(x0 + vx0t) sin Ωt+ (vy0 + Ωx0)t cos Ωt

(d) Use ParametricPlot to graph the orbits of the puck with x0 = Ω = 1 and
the following initial velocities v0. (i) (0,1). (ii) (0,0). (iii) (0,-1). (iv) (-0.5,-
0.5). (v) (-0.7,-0.7). (vi) (0,-0.1). If you have spare time, ponder (in terms of
fictitious forces) the features of the small-t behavior for the last three cases.

6. A thin rod (of width zero, but not necessarily uniform) is pivoted freely
at one end about the horizontal z axis, being free to swing in the xy plane (x
horizontal, y vertically down). Its mass is m, its CM is a distance a from the
pivot, and its moment of inertia (about the z axis) is I. (a) Write down the
EOM L̇z = Γz and, assuming the motion is confined to small angles (measured
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from the downward vertical), find the period of this compound pendulum.
(“Compound pendulum” is traditionally used to mean any pendulum whose
mass is distributed — as contrasted with a “simple pendulum,” whose mass
is concentrated at a single point on a massless arm.) (b) What is the length
of the “equivalent” simple pendulum, that is, the simple pendulum with the
same period?

7. Consider the rod of Problem 6. The rod is struck sharply with a horizontal
force F which delivers an impulse F ∆t = ξ a distance b below the pivot.
(a) Find the rod’s angular momentum about the pivot, and hence the rod’s
momentum, just after the impulse. (b) Find the impulse η delivered to the
pivot. (c) For what value of b (call it b0) is η = 0? (The distance b0 defines
the so-called “sweet spot.” If the rod were a tennis racquet and the pivot
your hand, then if the ball hits the sweet spot, your hand would experience
no impulse.)

8. A rigid body comprises 8 equal masses m at the corners of a cube of side a,
held together by massless struts. (a) Use the definitions (Eq. 10.37 and 10.38)
Ixx =

∑
mα(y2

α + z2
α) and Ixy = −

∑
mαxαyα (and cyclic permutations) to

find the moment of inertia tensor I for rotation about a corner O of the cube.
(Use axes along the three edges through O.) (b) Find the inertia tensor of
the same body but for rotation about the center of the cube. (Again use axes
parallel to the edges.) Explain why in this case certain elements of I could be
expected to be zero.

9. Uhoh — the errata (“Important errors,” page 484) to David Morin’s text-
book state that HW8/q4 should be replaced (!) with the following problem,
which I want you to solve so that you’re not led astray. At a polar angle θ, a
projectile is fired eastward with speed v0 at an angle α above the ground. Show
that the southward (in the northern hemisphere) and eastward deflections due
to the Coriolis force are (to first order in Ω)

dsouth =
4Ωv3

0

g2
cos θ cosα sin2 α

deast =
4Ωv3

0

g2
sin θ

(
cos2 α sinα− 1

3
sin3 α

)
.

Hint: The first term in deast arises because the flight time is modified due to
the vertical component of the Coriolis force.

Remember online feedback at positron.hep.upenn.edu/q351
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XC00*. Optional/extra-credit. If there are extra-credit problems from
HW4,5,6,7,8 that you didn’t have time to do sooner, you can feel free to turn
them in with HW10 for full credit. Just clearly indicate for Tanner which
problem you’re solving.

XC1*. Optional/extra-credit. (a) Show that if an object is thrown with
initial velocity v0 from a point O on the earth’s surface at colatitude θ, then
(as you worked out last week, in less generality) to first order in Ω its orbit is

x = vx0t+ Ω(vy0 cos θ − vz0 sin θ)t2 +
1

3
Ωgt3 sin θ

y = vy0t− Ω(vx0 cos θ)t2

z = vz0t−
1

2
gt2 + Ω(vx0 sin θ)t2

Use this result to do the following: A naval gun shoots a shell at colatitude
θ in a direction that is an angle α above the horizontal and due east, with
muzzle speed v0. (b) Ignoring the earth’s rotation (and air resistance), find
how long (t) the shell would be in the air and how far away (R) it would
land. If v0 = 500 m/s and α = 20◦, what are t and R? (c) A naval gunner
spots an enemy ship due east at the range R of part (b) and, forgetting about
the Coriolis effect, aims his/her gun exactly as in part (b). Find by how far
north or south, and in which direction, the shell will miss the target, in terms
of Ω, v0, α, θ, and g. (It will also miss in the east-west direction, but we
save this complication for XC2.) (d) If the incident occurs at latitude 50◦

north (θ = 40◦), what is this distance? (e) What if the latitude is 50◦ south
(θ = 140◦)? This problem is a serious issue in long-range gunnery: In a
battle near the Falkland Islands (a.k.a. Islas Malvinas) in World War I, the
British navy consistently missed German ships by many tens of yards because
they apparently forgot that the Coriolis effect in the southern hemisphere is
opposite to that in the north.

XC2*. Optional/extra-credit. For problem XC1(d) and (e), find the dis-
tance by which the shell misses its target in both the north-south and east-west
directions. [In this case, you should account for the fact that the time of flight
is affected by the Coriolis effect — a complication that we ignored last week
in HW8.] How much is your calculated deflection affected by whether or not
you account for the time-of-flight correction? (Oops! While the TOF correc-
tion to the N-S deflection is a correction to a correction, i.e. O(Ω2), the TOF
correction to the eastward range is a correction (O(Ω)) to a value that starts
off with no Ω dependence, so it is significant.)
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