
Physics 351, Spring 2015, Homework #11.
Due at start of class, Friday, April 10, 2015

Course info is at positron.hep.upenn.edu/p351

When you finish this homework, remember to visit the feedback page at
positron.hep.upenn.edu/q351

to tell me how the homework went for you.

1. [Here’s a problem that appeared on a previous year’s midterm exam; the
last two parts were extra-credit on the exam.] Consider the double pendulum
consisting of two bobs confined to move in a plane. The rods are of equal
length `, and the bobs have equal mass m. The generalized coordinates used
to describe the system are θ1 and θ2, the angles that the rods make with the
vertical (see left figure below). (a) Write the Lagrangian for the system. (This
could be an opportunity to practice writing (v1 + v2)2 = v2

1 + v2
2 + 2v1 · v2.)

(b) Next, simplify your Lagrangian from part (a) by assuming that angles
θ1 and θ2 are both small. Keep terms up to second order in the angles, the
angular velocities, and their products. (c) Find the two Lagrange equations of
motion, which will be a set of coupled, linear differential equations. (d) Solve
the equations of motion (e.g. using the techniques of Chapter 11).

2. [Here’s another problem from a previous year’s midterm exam; the last
part was extra-credit on the exam.] A block of mass M moves on a fric-
tionless horizontal rail. A pendulum of length L and mass m hangs from
the block. (See right figure above.) Let x be the displacement of the block,
and let θ be the angular displacement of the pendulum w.r.t. the vertical.
(a) Write the Lagrangian for the system. (Another possible opportunity to
write (v1 + v2)2 = v2

1 + v2
2 + 2v1 · v2 ?) (b) Which of the coordinates is ig-

phys351/hw11.tex page 1 of 4 2015-04-02 12:52



norable (“cyclic”)? What is the associated conserved quantity? This is an
example of what conservation law? (c) Find the Lagrange equations of motion
for the system. (d) Simplify the equations of motion found in part (c) for the
case of small oscillations (where you can discard any terms of second order or
higher in the displacements, velocities, or their products). (e) Solve the system
of differential equations from part (d) and determine the most general motion
of the system. (Your solution should have four arbitrary constants. Using the
results of part (b) should help you to simplify the problem.)

3. A rigid body consists of three equal masses fastened at the positions (a, 0, 0),
(0, a, 2a), (0, 2a, a). (a) Find the inertia tensor I. (b) Find the principal
moments and a set of orthogonal principal axes. (If you don’t feel like doing
it by hand, just use Wolfram Alpha, or Mathematica, etc.) (c) For this inertia
tensor, is the choice of principal axes unique? Why or why not? If not,
what linear combinations of your previously found principal axes would also
be principal axes?

4. (a) A rigid body is rotating freely, subject to zero torque. Use Euler’s
equations (Eq. 10.88) to prove that the magnitude of the angular momentum
L is constant. (Multiply the ith equation by Li = λiωi and add the three
equations.) (b) In much the same way, show that the kinetic energy of rotation
Trot = 1

2
(λ1ω

2
1 + λ2ω

2
2 + λ3ω

2
3), as in (Eq. 10.68), is constant.

5. We saw in §10.8 that in the free precession of an axially symmetric body
(λ1 = λ2) the three vectors ê3 (the symmetry axis), ω, and L lie in a plane. As
seen in the body frame, ê3 is fixed, and ω and L precess around ê3 with angular
velocity Ωb = ω3(λ1−λ3)/λ1. As seen in the space frame, L is fixed, and ω and
ê3 precess around L with angular frequency Ωs. In this problem you will find
three equivalent expressions for Ωs. (a) Argue that Ωs = Ωb + ω. [Remember
that relative angular velocities add like vectors.] (b) Bearing in mind that Ωb

is parallel to ê3, prove that Ωs = ω sinα/ sin θ, where α is the angle between
ê3 and ω, and θ is the angle between ê3 and L. (See Figure 10.9.) (c) Thence
prove that

Ωs = ω
sinα

sin θ
=

L

λ1

= ω

√
λ2

3 + (λ2
1 − λ2

3) sin2 α

λ1

6. Consider the rapid steady precession of a symmetric top predicted in con-
nection with (Eq. 10.112). (a) Show that in this motion the angular momentum
L must be very close to the vertical. [Hint: Use (Eq. 10.100) to write down
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the horizontal component Lhor of L. Show that if φ̇ is given by the right side
of (Eq. 10.112), Lhor is exactly zero.] (b) Use this result to show that the rate
of precession Ω given in (Eq. 10.112) agrees with the free precession rate Ωs

found in (Eq. 10.96).

7. In the discussion of steady precession of a top in §10.10, the rates Ω at
which steady precession can occur were determined by the quadratic equation
(Eq. 10.110). In particular, we examined this equation for the case that ω3 is
very large. In this case you can write the equation as aΩ2 + bΩ + c = 0 where
b is very large. (a) Verify that when b is very large, the two solutions of this
equation are approximately −c/b (which is small) and −b/a (which is large).
What precisely does the condition “b is very large” entail? (You should find a
dimensionless ratio � 1.) (b) Verify that these give the two solutions claimed
in (Eq. 10.111) and (Eq. 10.112).

8. [Here’s a problem from last year’s final exam.] In a “rolling mill,” grain is
ground by a disk-shaped millstone that rolls in a circle on a flat surface and
is driven by a vertical shaft. Assume that the millstone is a uniform disk of
radius b and negligible thickness. (λ3 = 1

2
mb2. What is λ1 = λ2, given that

this object is planar?) Also assume that the wheel cannot tip, so it always
remains perpendicular to the ground. The wheel rolls without slipping along
a circle of radius R with angular velocity Ω as indicated in the figure. Show
that the normal force that the ground exerts on the wheel is Mg + 1

2
MbΩ2.

Because of the angular momentum of the millstone, the contact force with the
surface can be much larger than the weight of the wheel, which is what makes
this an effective way to grind grain.

Remember online feedback at positron.hep.upenn.edu/q351
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XC00*. Optional/extra-credit. If there are extra-credit problems from
earlier homeworks that you didn’t have time to do sooner, you can feel free
to turn them in with HW11 for full credit. Just clearly indicate for Tanner
which problem you’re solving.

XC1. Optional/extra-credit. An important special case of the motion of a
symmetric top occurs when it spins about a vertical axis. Analyze this motion
as follows: (a) By inspecting the effective PE (Eq. 10.114), show that if at any
time θ = 0, then L3 and Lz must be equal. (b) Set Lz = L3 = λ3ω3 and then
make a Taylor expansion of Ueff(θ) about θ = 0 to terms of order θ2. (c) Show
that if ω3 > ωmin = 2

√
MgRλ1/λ2

3, then the position θ = 0 is stable, but if
ω3 < ωmin it is unstable. (In practice, friction slows the top’s spinning. Thus
with ω3 sufficiently fast, the vertical top is stable, but as it slows down the top
will eventually lurch away from the vertical when ω3 reaches ωmin.)

XC2. Optional/extra-credit. [Computer] The nutation of a top is con-
trolled by the effective potential energy (Eq. 10.114). Make a graph of Ueff(θ)
as follows: (a) First, since the second term of Ueff(θ) is a constant, you can
ignore it. Next, by choice of your units, you can take MgR = 1 = λ1. The
remaining parameters Lz and L3 are genuinely independent parameters. To
be definite set Lz = 10 and L3 = 8 and plot Ueff(θ) as a function of θ. (b) Ex-
plain clearly how you would use your graph to determine the angle θ0 at which
the top could precess steadily with θ = constant. Find θ0 to three signifi-
cant figures. (c) Find the rate of this steady precession, Ω = φ̇, as given by
(Eq. 10.115). Compare with the approximate value of Ω given by (Eq. 10.112).

XC3. Optional/extra-credit. Do Taylor’s problem 10.33 (page 412), which
is too long to retype here. It involves deriving expressions for T and for L.
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