
Physics 351, Spring 2015, Homework #12.
Due at start of class, Friday, April 17, 2015

Course info is at positron.hep.upenn.edu/p351

When you finish this homework, remember to visit the feedback page at
positron.hep.upenn.edu/q351

to tell me how the homework went for you.

1. Hamiltonian treatment of the symmetric top. [Here’s a problem that ap-
peared on a previous year’s final exam.] Consider a symmetric top (λ1 = λ2)
whose tip has a fixed location in space. Using the Euler angles φ, θ, and ψ
(whose detailed definitions are not needed for you to solve this problem) to
represent the top’s orientation, the top’s Lagrangian can be written as

L =
1

2
λ1φ̇

2 sin2 θ +
1

2
λ1θ̇

2 +
1

2
λ3(ψ̇ + φ̇ cos θ)2 −MgR cos θ

where M is the mass of the top and R is the distance from the contact point
to the top’s CoM. λ3 is the moment of inertia for the top’s symmetry axis, and
λ1 is the moment of inertia for the other two principal axes. (a) Calculate the
three generalized momenta, pφ, pθ, and pψ. (b) The simplest way to construct
the Hamiltonian is to realize that the coordinates are natural, so H = T + U .
Use this to show that the Hamiltonian is given by

H =
(pφ − pψ cos θ)2

2λ1 sin2 θ
+

p2
θ

2λ1

+
p2
ψ

2λ3

+MgR cos θ

(c) Two of the Euler-angle coordinates are ignorable. Which ones? The cor-
responding generalized momenta are constant. Use this to show that the
Hamiltonian can be written as

H =
p2
θ

2λ1

+ Ueff(θ)

What is the effective potential energy Ueff for this system?

2. When you spin a coin around a vertical diameter on a table, it will lose
energy and go into a wobbling motion, whose frequency increases as the coin’s
angle w.r.t. horizontal decreases. Consider the moment when the coin makes
an angle θ w.r.t. the horizontal surface of the table. Assume that the CM of
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the coin is motionless and that the contact point moves along a circle on the
table, as shown in the left figure below. Let the radius of the coin be R, and
let Ω be the angular velocity of the motion of the contact point. Assume that
the coin rolls without slipping. (a) Show that the angular velocity of the coin
is ω = Ω sin θ ê1, where ê1 points upward along the coin, diametrically away
from the contact point. (b) Show that Ω = 2

√
g/(R sin θ).

3. Consider the modified Atwood machine shown in the right figure above.
The two weights on the left have equal masses m and are connected by a
massless spring of Hooke’s-law constant k. The weight on the right has mass
M = 2m, and the pulley is massless and frictionless. The coordinate x is
the extension of the spring from its equilibrium length; that is, the length of
the spring is le + x, where le is the equilibrium length (with all the weights
in position and M held stationary). (a) Show that the total potential energy
(spring plus gravitational) is just U = 1

2
kx2 (plus a constant that we can

take to be zero). (b) Find the two momenta conjugate to x and y. Solve
for ẋ and ẏ, and write down the Hamiltonian. Show that the coordinate y is
ignorable. (c) Write down the four Hamilton equations an solve them for the
following initial conditions: You hold the mass M fixed with the whole system
in equilibrium and y = y0. Still holding M fixed, you pull the lower mass m
down a distance x0, and at t = 0 you let go of both masses. [Hint: Write down
the initial values of x, y, and their momenta. You can solve the x equations
by combining them into a second-order equation for x. Once you know x(t),
you can quickly write down the other three variables.] Describe the motion.
In particular, find the frequency with which x oscillates.
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4. Consider the mass confined to the surface of a cone described in Example
13.4 (page 533). We saw there that there have to be maximum and minimum
heights zmax and zmin, beyond which the mass cannot stray. When z is a
maximum or minimum, it must be that ż = 0. Show that this can happen if
and only if the conjugate momentum pz = 0, and use the equation H = E,
where H is the Hamiltonian function (Eq. 13.3), to show that, for a given
energy E, this occurs at exactly two values of z. [Hint: Write down the
function H for the case that pz = 0 and sketch its behavior as a function of z
for 0 < z < ∞. How many times can this function equal any given E?] Use
your sketch to describe the motion of the mass.

5. Consider the mass confined to the surface of a cone described in Example
13.4 (page 533). We saw that there are solutions for which the mass remains at
the fixed height z = z0, with fixed angular velocity φ̇0 say. (a) For any chosen
value of pφ, use (Eq. 13.34) to get an equation that gives the corresponding
value of the height z0. (b) Use the equations of motion to show that this
motion is stable. That is, show that if the orbit has z = z0 + ε with ε small,
then ε will oscillate about zero. (c) Show that the angular frequency of these
oscillations is ω =

√
3 φ̇0 sinα, where α is the half angle of the cone (tanα = c

where c is the constant in ρ = cz). (d) Find the angle α for which the frequency
of oscillation ω is equal to the orbital angular velocity φ̇0, and describe the
motion for this case.

6. All of the examples in Taylor’s Chapter 13 and all of the problems (except
this one) treat forces that come from a potential energy U(r) [or occasionally
U(r, t)]. However, the proof of Hamilton’s equations given in §13.3 applies to
any system for which Lagrange’s equations hold, and this can include forces
not derivable from a potential energy. An important example of such a force is
the magnetic force on a charged particle. (a) Use the Lagrangian (Eq. 7.103)
to show that the Hamiltonian for a charge q in an electromagnetic field is
H = (p− qA)2/(2m) + qV . (This Hamiltonian plays an important role in the
quantum mechanics of charged particles.) (b) Show that Hamilton’s equations
are equivalent to the familiar Lorentz force equation mr̈ = q(E + v ×B).

7. Two masses m1 and m2 are joined by a massless spring (force constant k and
natural length l0) and are confined to move in a frictionless horizontal plane,
with CM and relative positions R and r as defined in §8.2. (a) Write down
the Hamiltonian H using as generalized coordinates X, Y , r, φ, where (X, Y )
are the rectangular components of R, and (r, φ) are the polar coordinates of
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r. Which coordinates are ignorable and which are not? Explain. (b) Write
down the 8 Hamilton equations of motion. (c) Solve the r equations for the
special case that pφ = 0 and describe the motion. (d) Describe the motion for
the case that pφ 6= 0 and explain physically why the r equation is harder to
solve in this case.

Remember online feedback at positron.hep.upenn.edu/q351
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XC00*. Optional/extra-credit. If there are extra-credit problems from
earlier homework assignments that you didn’t have time to do sooner, you can
feel free to turn them in with HW12 for full credit. Just clearly indicate for
Tanner which problem you’re solving.

XC1. Optional/extra-credit. Consider a rotating reference frame such as
a frame fixed on the earth’s surface. A particle is thrown vertically up with
initial speed v0, reaches a maximum height, and falls back to the ground. Show
that the Coriolis deflection when it reaches the ground is four times as large as
and in the opposite direction from the Coriolis deflection when it is dropped
from rest at the same maximum height. Can you explain why?

XC2. Optional/extra-credit. Assume that a piece of toast is a rigid uni-
form square of side length `. You butter the toast and then drop it from a
height H above a table; the table is a height h above the floor. The toast
starts off parallel to the table, and as it falls, it clips the edge of the table
and collides elastically, causing the toast to start to rotate. You want to find
the value of H, in terms of h and `, that leads to the sad situation in which
the toast makes exactly one-half revolution and lands on the floor butter-side-
down. Show that H = π2`2

6 (6h−π`) . [Hint: with a clever choice of origin, you
can argue that the angular momentum of the toast is conserved during the
collision with the table.]

XC3. Optional/extra-credit. (a) A small ball of radius r and uniform
density rolls without slipping at the bottom of a fixed cylinder of radius R� r.

Show that the frequency of small oscillations is ω =
√

5g
7R

. [You’ll need I =
2
5
Mr2 for a uniform sphere about an axis through its center.] (b) Generalize

your result for the case where the sphere’s density is not uniform (but is still
spherically symmetric), so its moment of inertia is given by I = βMr2.

XC4. Optional/extra-credit. Consider a top made of a wheel with all its
mass on the rim. A massless rod (perpendicular to the plane of the wheel)
connects the CM to a pivot. Initial conditions have been set up so that the
top undergoes precession, with the rod always horizontal. In the language of
the figure below (Morin’s Fig. 9.30), we may write the angular velocity of the
top as ω = Ωẑ + ω′x̂3 (where x̂3 = ê3 is horizontal here). Consider things in
the frame rotating around the ẑ axis with angular speed Ω. In this frame, the
top spins with angular speed ω′ around its fixed symmetry axis. Therefore, in
this frame we must have τ = 0, because L is constant. Verify explicitly that
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τ = 0 (calculated w.r.t. the pivot) in this rotating frame (you will need to
find the relation between ω′ and Ω). In other words, show that the torque due
to gravity is exactly canceled by the torque due to the Coriolis force (you can
quickly show that the centrifugal force provides no net torque). Remember
that HW10/XC3 implies a Coriolis torque of magnitude mω′Ωr2.

Remember online feedback at positron.hep.upenn.edu/q351
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