
Physics 351, Spring 2015, Homework #13.
Due at start of class, Friday, April 24, 2015

Course info is at positron.hep.upenn.edu/p351

When you finish this homework, remember to visit the feedback page at
positron.hep.upenn.edu/q351

to tell me how the homework went for you.

1. Consider a point mass M attached to a spring (force constant k), whose
other end is attached to a massless cart that is moved by an external device at
the constant speed v0. You will consider H for the system using two different
generalized coordinates. (a) First, consider the system using the variable x,
which is referenced to a fixed origin. (See left figure below.) Write down L
and find the Lagrange EOM for x. Now construct H. Does H equal the total
energy of the system? Is H conserved? Explain why your answers are OK.
(b) Second, analyze the system again using the “relative coordinate” x′, which
is the displacement of the point mass relative to the cart. (x′ is measured
from the equilibrium position of the mass M .) Write L and find the Lagrange
EOM for x′. Construct H. (H is different from what you found in the first
part because you are using a different coordinate.) Is H the total energy of
the system? Is H conserved? Explain why your answers are OK.

2. [This problem is from a past year’s exam.] A mass M is attached to a
massless hoop of radius R that lies in a vertical plane and is free to rotate
about its fixed center. M is tied to a string that winds part way around the
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hoop and then rises vertically up and over a massless pulley. A mass m hangs
on the other end of the string. (See above-right figure.) Find the EOM for
the angle θ of rotation of the hoop, where θ = 0 would put M directly below
the center of the hoop. What is the frequency of small oscillations about the
equilibrium angle θ0? Assume that m moves only vertically and that M > m.

3. Here is a problem that is a weird variation of an Atwood’s machine. The
goal is to find the accelerations of m1 and m2, as shown in the left figure below.
Also find the tension in the string! Assume that the pulleys are massless and
frictionless, so that the tension in the string is constant. The preferred way to
solve this problem is in the Lagrangian framework, using a Lagrange multiplier;
the constraint can be expressed at 2x+ y = L, the total length of the string.

4. A tube of mass M and length ` is free to swing by a pivot at one end.
(Use the moment of inertia of a uniform thin rod rotating about one end.) A
mass m is positioned inside the tube at this end. The tube is held horizontal
and then released. (See above-right figure.) Let θ be the angle of the tube
w.r.t. the horizontal, and let x be the distance the mass has traveled along
the tube. Find the Lagrange equations of motion for θ and x, then write them
in terms of θ and η ≡ x/` (the fraction of the distance along the tube). These
equations can only be solved numerically, and you must pick a numerical value
for the ratio r ≡ m/M in order to do this. Use Mathematica (or your favorite
alternative) to find the value of η when the tube is vertical (θ = π/2). Give
this value of η for a few values of r.

5. Consider a function f(q, p) of the coordinates q and p. Use Hamilton’s
equations to show that the time derivative of f can be written as

df

dt
=
∂f

∂q

∂H
∂p
− ∂f

∂p

∂H
∂q
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Note: this combination of partial deriviates comes up often enough to warrant
a name. The Poisson bracket of two functions, f1 and f2, is defined to be

{f1, f2} ≡
∂f1

∂q

∂f2

∂p
− ∂f1

∂p

∂f2

∂q

With this definition, the time derivative of f takes the nice compact form,
df/dt = {f,H}. (More generally, for f(q, p, t), df/dt = {f,H} + ∂f/∂t.)
Once you’ve seen commutators in quantum mechanics, you may enjoy this
analogy: [A,B] = ih̄ {A,B}. To give just one of many examples, the classical
result {x, px} = 1 has the QM analogy [x, px] = ih̄.

6. Consider the chaotic motion of a DDP for which the Liapunov exponent
is λ = 1, with time measured in units of the drive period as usual. (a) Sup-
pose that you need to predict φ(t) with an accuracy of 0.01 radian and that
you know the initial value φ(0) within 10−6 rad. What is the maximum time
tmax for which you can predict φ(t) within the required accuracy? This tmax is
sometimes called the time horizon for prediction within a specified accuracy.
(b) Suppose that, with a vast expenditure of money and labor, you manage
to improve the accuracy for your initial value to 10−9 radians (a 1000× im-
provement). What is the time horizon now (for the same required accuracy
of prediction)? By what factor has tmax improved? Your results illustrate the
difficulty of making accurate long-term predictions for chaotic motion.

7. A beam of particles is moving along a particle accelerator’s “beam pipe” in
the z direction. The particles are uniformly distributed in a cylindrical volume
of length L0 (in the z direction) and radius R0. The particles have momenta
uniformly distributed with pz in an interval p0 ±∆pz and the transverse mo-
mentum p⊥ inside a circle of radius ∆p⊥. To increase the particles’ spatial
density, the beam is focused by electric and magnetic fields, so that the radius
shrinks to a smaller value R. What does Liouville’s theorem tell you about
the spread in the transverse momentum p⊥ and the subsequent behavior of
the radius R? (Assume that the focusing does not affect either L0 or ∆pz.)

8. [This problem is adapted from a problem on the final exam I took for the
analogous course in fall 1990.] A uniform, infinitesimally thick, square plate
of mass m and side length d is allowed to undergo torque-free rotation. At
time t = 0, the normal to the plate, ê3, is aligned with ẑ, but the angular
velocity vector ω deviates from ẑ by a small angle α. The figure below depicts
the situation at time t = 0, at which time ê1 = x̂, ê2 = ŷ, ê3 = ẑ, and
ω = ω(cosαẑ + sinαx̂).
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(a) Show that the inertia tensor has the form I = I0

 1 0 0
0 1 0
0 0 2

 and find the

constant I0. (b) Calculate the angular momentum vector L at t = 0. (c) Draw
a sketch showing the vectors ê3, ω, and L at t = 0. Be sure that the relative
orientation of L and ω makes sense. This relative orientation is different for
frisbee-like (“oblate”) objects (λ3 > λ1) than it is for the American-football-
like (“prolate”) object (λ3 < λ1) drawn on Taylor’s page 400. (d) Draw and
label the “body cone” and the “space cone” on your sketch. (e) Calculate the
precession frequencies Ωbody and Ωspace. Indicate the directions of the preces-
sion vectors Ωbody and Ωspace on your drawing. (You puzzled through these
directions when you solved problem 10.46.) (f) You argued in HW11 that
Ωspace = Ωbody + ω. Verify (by writing out components) that this relation-
ship holds for the Ωspace and Ωbody that you calculate for t = 0. (g) Find
the maximum angle between ẑ and ê3 during subsequent motion of the plate.
Show that in the limit α� 1, this maximum angle equals α (dropping terms
O(α2) and higher). (h) When is this maximum deviation first reached? (i) As a
check, verify (for the α� 1 limit) that Feynman indeed misremembered which
way the factor of two had gone in this anecdote about a plate tossed through
the air in a Cornell cafeteria: positron.hep.upenn.edu/p351/feynman

Remember online feedback at positron.hep.upenn.edu/q351
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XC00*. Optional/extra-credit. If there are extra-credit problems from
earlier homework assignments that you didn’t have time to do sooner, you can
feel free to turn them in with HW13 for full credit. Just clearly indicate for
Tanner which problem you’re solving.

XC1. Optional/extra-credit. You can do any subset you wish of Taylor’s
12.6, 12.7, 12.8, 12.9, 12.10, 12.14, 12.15, 12.32, 12.33, 12.34 (all of which
involve some sort of modeling of the DDP or the Logistic Map using Mathe-
matica) and turn them in for extra credit. (Each one counts as an extra-credit
problem. Once you’ve done one of them, it should be easy to do several more.)

XC2. Optional/extra-credit. Remember that if you want to, you can read
Chapter 14 (collision theory) for extra credit. If you do so, email me a couple
of paragraphs summarizing the key ideas and results of the chapter, to collect
your extra credit. You can also do any Chapter 14 problems you like for extra
credit.

Remember online feedback at positron.hep.upenn.edu/q351
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