
Physics 364 Arduino Lab 1 Vithayathil/Kroll
Adapted from a lab originally written by Simon Hastings and Bill Ashmanskas

Last revised: 2014-11-12

Introduction

This lab introduces you to an electronic development platform, called Arduino, that has a
large user/developer base. This platform can be used to learn about and use various elec-
tronic modules such as LCD modules, stepper motors, communications and network tech-
nology etc. The goal in the next 2 or 3 labs is to learn how to write programs or “sketches”
to use the Arduino board to build a counter like you built with flipflops in a previous lab
and to build a basic digital-to-analog converter and a basic analog-to-digital converter.

The specific platform we will use is the Arduino UNO Rev3 board, which can be connected
to your laptop via a USB cable. The Arduino UNO is depicted in Fig. 1.

Figure 1: The revision 3 surface-mount-design Arduino Uno board. The top of the board is
shown on the left-hand photograph, and the bottom of the board is shown on the right-hand
photograph.

The Arduino UNO contains a microcontroller—a simple computer—based on the Atmel Cor-
poration ATmega328 chip. It is possible to read and write digital data (HIGH/LOW) to
digital pins 1-13 (these pins are shown in the photograph on the left-hand side of Fig. 1), to
read analog signals with 10-bit resolution on analog pins A0-A5, and to write pseudo analog
data (by varying the pulse duty cycle) on the digital pins labelled with a “˜” symbol on
them: 3, 5, 6, 9, 10, and 12. The board receives power via the USB cable, and programs
written in “C’ language are downloaded via the USB cable to the Arduino board to run your
device. For the circuits you will build using the Arduino, no external DC power supply is
required. You can get 5 V directly from the 5 V power pin on the Arduino. For your ground
reference, you may use any of the three ground pins on the Arduino.

phys364/lab20.tex page 1 of 14 2014-11-12 16:42

Getting Started

From http://arduino.cc/en/Main/Software download Arduino 1.0.6 to your laptop; in-
stall and then run the application. The Arduino graphic user interface (GUI) will appear on
your screen. From the Tools menu select Arduino Uno from the Boards submenu. Before
connecting your board to your laptop, make a note of the ports listed in the Serial Port
submenu, as depicted in Fig. 2. Now connect the Arduino board to your laptop. A new port
should show up in addition to the previous ports on the Serial Port submenu. Select this
new port as the port to use for communicating with your board. You are now ready to write
your first program or “sketch” in Arduinese.

Figure 2: Example of using the menu in the Arduino UNO GUI to select the serial port.

Load your first program/sketch; open file Blink from the File/Example/Basics menu. The
program contains the following code:

/*

Blink

Turns on an LED on for one second, then off for one second, repeatedly.

This example code is in the public domain.

*/

// Pin 13 has an LED connected on most Arduino boards.

// give it a name:

int led = 13;

phys364/lab20.tex page 2 of 14 2014-11-12 16:42

http://arduino.cc/en/Main/Software

// the setup routine runs once when you press reset:

void setup() {

// initialize the digital pin as an output.

pinMode(led, OUTPUT);

}

// the loop routine runs over and over again forever:

void loop() {

digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second

digitalWrite(led, LOW); // turn the LED off by making the voltage LOW

delay(1000); // wait for a second

}

Every sketch has two functions: setup() and loop() (this is a departure from C). The setup()
function is run first and only once, and then loop() keeps repeating the statements within
the loop() function. Statements within the curly brackets of a function are executed by the
function. The statement

int led = 13;

sets a variable led to the integer value 13. Every statement must be terminated with a
semicolon ;. The statement

pinMode(led, OUTPUT);

sets the digital pin 13 to be an output. The line

digitalWrite(led, HIGH);

sets pin 13 on the Arduino board to HIGH (5V).

delay(1000);

sets a delay of 1000ms before the next statement is executed. Anything after // on a line is
a comment and is ignored by the program. The void before each function tells the program
that the function returns nothing when it ends.

The sketch can be compiled from the sketch menu. Pressing the arrow button on the menu
bar compiles, uploads and runs the executable file on the Arduino board. While the Arduino
board is being uploaded, you should see the RX and TX LEDs on the board blink rapidly.
When the BLINK program runs, the LED connected to pin 13 should blink on and off every
second (digital pin 13 is the only pin with an associated led).

Change the blink time to 200ms, then compile and upload the sketch. The LED should blink
at 200ms. Save the program with a new name, for example, “myBlink” (You may want to
save it in a different folder than the folder that is selected.)

phys364/lab20.tex page 3 of 14 2014-11-12 16:42

Exercise 1

Now enter the following code in a new sketch. Predict (in the blank space here) what
this code will do and then upload it and see if it matches your prediction.

int counter; // create a new global variable

void setup() {

pinMode(13, OUTPUT);

counter = 0;

}

void loop() {

// the following variable controls the length of time of the delay

int delay_val =1000*(1 + counter);

digitalWrite(13, HIGH);

delay(delay_val); // this time delay for a variable amount of time

digitalWrite(13, LOW);

delay(1000);

counter = counter + 1;

}

The following URL http://arduino.cc/en/Reference/HomePage is the language reference.
Spend some time perusing the if, if...else, for, while syntaxes under control structures in
the reference as well as the operators arithmetic, comparison, boolean and bitwise. You will
need to use some combination of these control structures and operators. Study the syntax
for defining various data types and learn about global and local variables and their scope
(how long they live).

phys364/lab20.tex page 4 of 14 2014-11-12 16:42

http://arduino.cc/en/Reference/HomePage

Exercise 2

Next modify your program to make the LED blink exactly 10 times and then turn off. You
should write two sketches, one with an if control structure and the other with a for control
structure. If you are stuck, you may find it helpful to look at an example sketch illustrating
the use of the if and for control structures. (Briefly summarize below how you modi-
fied your program.)

phys364/lab20.tex page 5 of 14 2014-11-12 16:42

Exercise 3

Wire up digital pins 2 to 7 to make a 6-bit LED display on a breadboard. Each pin in output
mode is either HIGH (5 V) or LOW (ground). Remember to connect one of the three ground
pins on the Arduino board to the ground on your breadboard. Include a 200 Ω resistor in
series with each LED to limit the current to the LED. Write a program that causes the LED
display to “count” from 0 (all LEDs off) to 63 (all LEDs on) in binary on your LED with,
for example, one second between changes in value.

There are many ways to write a program that will accomplish the above task. One way uses
a “bit mask.” In order to get a specfic bit of a variable, one normally uses a mask and the &
operator; for more information, take a look at http://arduino.cc/en/Reference/BitwiseAnd.
For example, if we wanted to just read the fourth bit of the integer variable num, we would
use the command:

int val = num & 0b1000;

0b indicates that the number is in binary format and 1000 is the binary representation of 8.
If the binary representation of num has a 0 in the fourth bit, then this operation will set val
to 0; if the binary representation of num has a 1 in the fourth bit, then this operation will
set val to 8. The command

digitalWrite(pin, val)

will set pin to LOW if val is zero and HIGH if val is not zero.
Another way to do this is with the bitRead command,

bit = bitRead(num, n);

where num is the variable to be read, n is the bit to be read (0 is the least significant bit,
following the example above, n = 4), and the variable bit is either set to 0 or to 1.

Briefly summarize, either here or on the following blank page, how you accom-
plished this task.

When you are done, keep your LEDs connected, as you will need them for
Exercise 4.

phys364/lab20.tex page 6 of 14 2014-11-12 16:42

phys364/lab20.tex page 7 of 14 2014-11-12 16:42

Exercise 4

Write a sketch that starts counting when one button—the count button—is pressed and
held. When the count button is released, the counter should stop counting. If the count
button is pressed and held again, the counter should resume counting from where it left off.
When a second button—the reset button—is held pressed, the counter should reset to 0.
This is similar to what a stopwatch does.

In order to read the state of your input pins, you can use the command:

val = digitalRead(inputPin);

where inputPin is your chosen input pin.

1k

5V (from Arduino)

Input
Arduino

Figure 3: Left: a four-pin switch. Two pairs of pins are connected together, and these two
pairs are then connected by holding down the switch. Right: schematic for connecting the
switch to the Arduino

Use two switches which look like the image shown on the left-hand side of Fig. 3. Using
a multimeter, determine which pins are connected when the button is held pressed (this
type of switch is called a “momentary” switch). Two pairs of pins are always connected
independent of whether the button is pressed or not. The switch is constructed in this way
(as opposed to just having two pins) presumably for mechanical stability. The pin of the
switch that is connected to the input of the Arduino board should be connected to ground
with a 1 k resistor as depicted on the right-hand side of Fig. 3. The 1 k resistor is needed
because otherwise when the button is not pressed, the input is floating and in an undefined
state. The other side of the switch should be connected to the 5 V pin of the Arduino board.

Briefly summarize, on the following blank page, how you accomplished this task.

phys364/lab20.tex page 8 of 14 2014-11-12 16:42

phys364/lab20.tex page 9 of 14 2014-11-12 16:42

Exercise 5

The final exercise is to display the output of your counter on your laptop. To do this you
will have to add to your setup() loop the following line:

Serial.begin(9600); // This sets up serial communication to the laptop

In the loop section add the following lines:

Serial.print("\t counter = ");

// prints a tab followed by counter =

Serial.println(counter);

// prints value of the counter variable and adds a newline.

To see the output on the laptop screen select Serial Monitor from the Tools menu of the
Arduino IDE. Check if the count displayed on the laptop corresponds with the binary count.

phys364/lab20.tex page 10 of 14 2014-11-12 16:42

Optional 6: reaction timer

Using one push-button input (with connection to +5 V and pull-down resistor to ground)
and one LED (with current-limiting series resistor), make a reaction timer that measures
how quickly your finger responds to a visual stimulus from the Arduino.

The Arduino should first turn on the LED, then wait for you to press a button. Once
you press the button, the Arduino should turn off the LED, then delay a length of time
1000 ms < ∆t < 5000 ms, then turn on the LED. The Arduino then measures how long
it takes before you respond by pressing the button. As soon as you press the button, the
Arduino turns the LED off, then reports (via Serial.print() to the serial console) the
number of milliseconds that it took you to react. After another brief delay, the Arduino
turns the LED back on and returns to the initial state.

If you do this exercise, you don’t need to write anything down, but please call
us over so that you can show off your results!

phys364/lab20.tex page 11 of 14 2014-11-12 16:42

Optional 7: musical tones

First make a sketch whose loop() function first outputs HIGH on pin 8, then waits 1.136 ms
by calling delayMicroseconds(1136), then outputs LOW on pin 8, then once again calls
delayMicroseconds(1136). Check with your oscilloscope that the result is a 440 Hz square
wave on pin 8.

Now notice that the same result can be achieved much more easily by calling the built-in
function tone(pin, frequency) where in this case pin = 8 and frequency = 440. You can
also call tone(pin, frequency, duration) where duration is in milliseconds.

Next, connect a 100 Ω resistor and a speaker in series from pin 8 to ground, as shown below.
You should hear (quietly) the A note above middle C.

(Continued on next page.)

phys364/lab20.tex page 12 of 14 2014-11-12 16:42

If you really want to make enough noise to annoy your neighbors, you can try using a
MOSFET switch to boost the power supplied to the speaker! Here is a circuit that I (Bill)
tried out in the lab the other day:

Whether you go with the quiet or the noisy version, here are two more challenges you can
add to this exercise:

First, try playing a major scale, starting from middle C (262 Hz). The notes C, D, E, F, G,
A, B, C that you need to play have frequencies 262, 294, 330, 349, 392, 440, 494, 523 Hz,
as indicated on the keyboard below. Notice that the frequency ratio between octaves is 2,
between adjacent keys (“half step,” e.g. E to F) is 21/12 ≈ 1.06, and between two keys having
one key in between (“whole step,” e.g. C to D) is 21/6 ≈ 1.12.

phys364/lab20.tex page 13 of 14 2014-11-12 16:42

Second, if you’re feeling ambitious, try making a simple 8-button musical keyboard, using 8
copies of this circuit to drive 8 Arduino digital input pins:

phys364/lab20.tex page 14 of 14 2014-11-12 16:42

