
Physics 364, Fall 2014, Lab #24 Name:
(Field Programmable Gate Arrays: 1)

Monday, November 24 (section 401); Tuesday, November 25 (section 402)

Course materials and schedule are at http://positron.hep.upenn.edu/p364

This file: http://positron.hep.upenn.edu/wja/p364/2014/files/lab24.pdf

Today’s lab will introduce you to working with the BASYS2 circuit board, which is made
by Digilent, Inc. The key component on the BASYS2 board is a small Field Programmable
Gate Array, made by Xilinx, Inc. FPGAs can implement arbitrary combinations of logic
gates (AND, OR, XOR, NAND, arithmetic, etc.), as well as flip-flops, memories, and more.
The FPGA itself is the 1 cm × 1 cm chip at the center of the BASYS2 board. This little
chip is equivalent to about 100,000 individual NAND gates! The board is both powered and
programmed from the USB port of a computer (Windows or Linux, though I managed to get
it to work at home on my Mac by using VirtualBox to run a Linux virtual machine). If you’re
curious for more details, the formal documentation for the BASYS2 board can be found at
http://www.digilentinc.com/Products/Detail.cfm?Prod=BASYS2 . The BASYS2 man-
ual is at http://www.digilentinc.com/Data/Products/BASYS2/Basys2_rm.pdf .

There is very little for you to write up for today’s lab, but there are a few
questions here and there, which you should look out for. Also, before you leave
class, you need to show us how far you got through the material. There are six
parts: try to budget your time so that you get through all of them!

The FPGA is connected to 8 ON/OFF switches (lower edge of board, left side): the corre-
sponding FPGA inputs are HIGH when the switches are UP and LOW when the switches
are DOWN. Just above the 8 switches are 8 LEDs: the LEDs are ON when the correspond-
ing FPGA outputs are HIGH and OFF when the outputs are LOW. To the right of the
switches are 4 buttons: each one corresponds to an FPGA input that is normally LOW but
goes HIGH while your finger is on the button. Above the buttons is a set of four 7-segment
LED displays, which can be used to display numbers and a few letters, most commonly 0-9
and A–F for hexadecimal display of 16-bit numbers; these 32 LEDs (including the 4 decimal
points) are somewhat confusingly controlled by 12 FPGA output pins. An on-board crystal
oscillator provides a 25 MHz reference clock to the FPGA, which we will divide down and use
at much lower speed. The board can connect to a PS/2 mouse or keyboard and to a VGA
monitor, so in principle you could make a little video game, if you were really ambitious. On
the top edge of the board are four sets of four user-defined input/output pins, which we will
interface to our own breadboards in class next week.

The two main things that we have been aiming for this course to leave you with are (a)
conceptual insight into how things work (a.k.a. demystification), and (b) technical skills
that may help you to work in a research group. The reason for including the FPGA segment
of the course is (a) to gain some conceptual understanding for how, in principle, a computer

phys364/lab24.tex page 1 of 25 2014-11-21 14:55

http://positron.hep.upenn.edu/p364
http://positron.hep.upenn.edu/wja/p364/2014/files/lab24.pdf
http://www.digilentinc.com/Products/Detail.cfm?Prod=BASYS2
http://www.digilentinc.com/Data/Products/BASYS2/Basys2_rm.pdf

can be build up out of logic gates (which you already know can be built up out of transistors),
and (b) because FPGAs are a big part of the electronics design that we do for experiments in
particle physics, medical physics, astronomy, and presumably other fields in which scientists
build their own instruments.

Part 1
(a) Connect your board to the lab computer’s USB port and turn it on by sliding the switch
on the lower-left corner of the board to the UP position. If the blue “MODE” jumper on the
top-right corner of the board is on the “ROM” (right-hand) position (but probably it is not,
if your board has been used before), then you will see a 1111, 2222, 3333, . . ., FFFF pattern
count on the 7-segment LED display. If this is what you see, then power the board OFF,
then move the blue jumper to the “PC” (left-hand) position, and power the board back ON.
You should see a bright red LED illuminate near the power switch, but nothing else. Since
nearly all of our BASYS2 boards were used in the Fall 2012 course, you probably will not
need to do anything described in this paragraph.

Now start up the Digilent ADEPT software on the lab PC. The software should detect the
BASYS2 board. From your web browser, download the file
http://positron.hep.upenn.edu/wja/p364/2014/files/ledcount.bit

to your PC (you’ll need to pick a folder you’re allowed to save to). Now in the ADEPT
software’s config tab, choose this ledcount.bit file as the program to load into the FPGA
(XC3S100E). Click the program button! If all goes well, you should see the eight green
LEDs counting in binary, updating once per second. If that doesn’t work, ask for help! This
is just a check that you can load a program onto the board. The ADEPT software (from
Digilent, who make the board) is a tool for loading a *.bit file onto the ADEPT board.
The *.bit file itself is created by the ISE software (from Xilinx, who make the FPGA chip).

phys364/lab24.tex page 2 of 25 2014-11-21 14:55

http://positron.hep.upenn.edu/wja/p364/2014/files/ledcount.bit

(b) Now use your web browser to download
http://positron.hep.upenn.edu/wja/p364/2014/files/lab24.zip

which is an archived version of a Xilinx ISE project. (Again, you need to save the file in a
location you are allowed to write to on the PC.) Now from Windows, right-click the file and
extract its contents to a folder. Now go into that folder and double-click on lab24.xise,
which should open up the Xilinx ISE software. In the ISE software’s processes panel,
right-click on generate programming file and choose run. After a moment, you should
see the message Process "Generate Programming File" completed successfully. The
result of all this is a file called lab24_part1.bit, which you can now load into the BASYS2
board using the ADEPT software. There is also a pre-compiled copy of lab24_part1.bit at
http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part1_precompiled.bit

Here is the Verilog source code for the program that you just loaded:

1 //

2 // lab24_part1.v

3 // Verilog source code for Part 1 of Lab 24

4 // PHYS 364, UPenn, fall 2014

5 //

6

7 // This line forces you to declare the names of all wires explicitly;

8 // otherwise, if you use a name that the compiler is not aware of, it

9 // will quietly assume that it is a new wire name. In Verilog, a "wire"

10 // connects the output of one part of your circuit to the input of

11 // another part of your circuit, just like a physical wire.

12 ‘default_nettype none

13

14 // In Verilog, a "module" is like a schematic diagram that describes how

15 // a component of your circuit behaves. This "top-level" module represents

16 // the schematic diagram for the entire FPGA. Its inputs represent the

17 // signals coming in to the FPGA, and its outputs represent the signals

18 // going out of the FPGA. The signals with square brackets [] by their

19 // names are multi-bit signals: for example, there are 4 buttons and

20 // 8 switches among the FPGA’s inputs, and there are 8 LEDs among the

21 // FPGA’s outputs. The FPGA itself is the 1cm x 1cm chip sitting at the

22 // center of the BASYS2 printed circuit board. An FPGA is capable of

23 // implementing arbitrary digital logic functions, so it is a handy way

24 // for you to see what can be done with a very large collection of AND,

25 // OR, XOR gates, flip-flops, etc.

26 module lab24_part1

27 (

28 input mclk, // 25 MHz clock built into the BASYS2 board

29 output [6:0] seg, // red 7-segment display to draw numbers & letters

30 output dp, // decimal point for 7-seg (0=ON, 1=OFF)

31 output [3:0] an, // shared LED anode signal per 7-seg digit (0=ON)

32 output [7:0] led, // 8 green LEDs, just above sliding switches

33 input [7:0] sw, // 8 sliding switches (up=1, down=0)

phys364/lab24.tex page 3 of 25 2014-11-21 14:55

http://positron.hep.upenn.edu/wja/p364/2014/files/lab24.zip
http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part1_precompiled.bit

34 input [3:0] btn, // 4 push buttons (normal=0, pushed=1)

35 input [4:1] ja, // 4 pins (JA, NW corner) can connect to breadboard

36 input [4:1] jb, // 4 pins (JB) can connect to breadboard

37 input [4:1] jc, // 4 pins (JC) can connect to breadboard

38 input [4:1] jd // 4 pins (JD, NE corner) can connect to breadboard

39);

40 // We define modules below called ’and_gate’, ’nand_gate’, etc. For

41 // each of these modules, the first argument is the output pin, and

42 // the next two arguments are the input pins. When I write the line

43 // ’and_gate myand1(led[0], sw[0], sw[1]);’ it is equivalent to drawing

44 // an AND gate on my schematic diagram, writing the name ’myand1’ to

45 // label this AND gate (so that it has a unique identity to distingish

46 // two copies of the AND gate, e.g. ’myand1’ and ’myand2’), and then

47 // connecting the output of the AND gate to LED #0 and the two inputs

48 // of the AND gate to switches #0 and #1.

49 and_gate myand1 (led[0], sw[0], sw[1]);

50

51 // Just to show you why we give each instance of ’and_gate’ a unique

52 // name, here is a second copy of the same circuit (i.e. a second instance

53 // of the same ’and_gate’ module), which functions equivalently to the

54 // first instance, but its output is connected to LED #7 and its input

55 // is connected to switches #6 and #7.

56 and_gate myand2 (led[7], sw[6], sw[7]);

57

58 // LED #1 should display the NAND of switches #0 and #1. Note that

59 // the switches and LEDs are numbered from 0 to 7, where 0 is on the

60 // right-hand side and 7 is on the left-hand side.

61 nand_gate mynand1 (led[1], sw[0], sw[1]);

62

63 // LED #2 should display the OR of the two switches.

64 or_gate myor1 (led[2], sw[0], sw[1]);

65

66 // LED #3 should display the NOR of the two switches.

67 nor_gate mynor1 (led[3], sw[0], sw[1]);

68

69 // LED #4 should display the XOR of the two switches.

70 xor_gate myxor1 (led[4], sw[0], sw[1]);

71

72 // LED #5 is the ’Q’ output of a SR latch, which is the most basic

73 // kind of flip-flop we studied. Button #0 is the SET input, and

74 // button #1 is the RESET input.

75 sr_latch mysr1 (led[5], btn[0], btn[1]);

76 assign led[6] = btn[3];

77

78 // These inputs are currently unused, but I connect them to some

79 // unnecessary logic so that the Xilinx compiler doesn’t complain

80 // about unused inputs.

phys364/lab24.tex page 4 of 25 2014-11-21 14:55

81 wire dummy = ({ja,jb,jc,jd,mclk}==0);

82

83 // These outputs are currently unused, but I connect them anyway to

84 // keep the compiler from complaining.

85 assign seg[6] = sw[6];

86 assign seg[5] = sw[5];

87 assign seg[4] = sw[4];

88 assign seg[3] = sw[3];

89 assign seg[2] = sw[2];

90 assign seg[1] = sw[1];

91 assign seg[0] = sw[0];

92 assign dp = dummy;

93 assign an[3] = ~btn[3];

94 assign an[2] = ~btn[2];

95 assign an[1] = ~btn[1];

96 assign an[0] = ~btn[0];

97 endmodule

98

99

100 // This ’and_gate’ module tells the compiler what I mean when I ask it

101 // to put an ’and_gate’ down on the top-level schematic. I define a module

102 // with one output pin called ’o’ and two input pins called ’a’ and ’b’,

103 // to correspond with a real two-input AND gate.

104 module and_gate (output o, input a, input b);

105 // Verilog uses a C-like operator syntax. The ’&’ operator means the

106 // ’AND’ operation. The assign statement tells the compiler to take

107 // whatever is on the right-hand side of the ’=’ sign and to wire it up

108 // to whatever is on the left-hand side. In this case, we ’AND’ the two

109 // inputs and connect the result to the output.

110 assign o = a & b;

111 endmodule

112

113 module nand_gate (output o, input a, input b);

114 // We can also declare a ’wire’ inside a module, which is like drawing

115 // a new wire on your schematic diagram. Writing it this way is like

116 // making a new wire called ’obar’ which is connected to the AND of

117 // inputs ’a’ and ’b’. Then the wire ’obar’ is used as the input to

118 // a NOT gate (a.k.a. an inverter), whose output we connect to ’o’. In

119 // Verilog (as in C), the bit-wise NOT operator is a tilde (~).

120 wire obar = a & b;

121 assign o = ~obar;

122 endmodule

123

124 module or_gate (output o, input a, input b);

125 // In Verilog, as in C, the bit-wise OR operator is the veritical bar ’|’.

126 assign o = a | b;

127 endmodule

phys364/lab24.tex page 5 of 25 2014-11-21 14:55

128

129 module nor_gate (output o, input a, input b);

130 assign o = ~(a | b);

131 endmodule

132

133 module xor_gate (output o, input a, input b);

134 // In Verilog, as in C, you use a carat ’^’ for exclusive OR.

135 assign o = a ^ b;

136 endmodule

137

138 // This module implements the SR latch that we studied in Reading #11.

139 // You draw two NOR gates. The output of the first NOR gate is called ’q’.

140 // The output of the second NOR gate is called ’qbar’ (i.e. the opposite

141 // of ’q’). The first NOR gate’s inputs are connected to r (reset) and qbar.

142 // The second NOR gate’s inputs are connected to s (set) and q. Normally,

143 // neither r nor s is asserted, and q keeps its previous state. If you

144 // assert r (but not s), then q goes to 0. If you assert s (but not r), then

145 // q goes to 1. An undefined state results if r and s are asserted together.

146 module sr_latch (output q, input s, input r);

147 // We define the wire ’qbar’ here, but we don’t connect it to anything,

148 // because using it as the output argument of the second nor_gate will

149 // connect it. You can see that the wire called ’qbar’ connects the

150 // output of the second nor_gate to an input of the first nor_gate,

151 // just as you would do if you were drawing a schematic diagram of an

152 // SR latch.

153 wire qbar;

154 nor_gate mynor1 (q, r, qbar);

155 nor_gate mynor2 (qbar, s, q);

156 endmodule

As you learned in the reading, Verilog is a programming language that is used to describe
digital logic systems. It is widely used for both FPGA programming and the design of inte-
grated circuits. In this course, we’ll just dabble in Verilog. If you’re eager to learn more of
the details when the course is over, an excellent introductory book is FPGA Prototyping by
Verilog Examples by Pong P. Chu. I learned Verilog by reading Chu’s book, so I can highly
recommend it. Another book I have been meaning to read (but haven’t yet), as it has good
reviews on Amazon, is Verilog by Example by Blaine Readler.
http://www.amazon.com/FPGA-Prototyping-Verilog-Examples-Spartan-3/dp/0470185325

http://www.amazon.com/Verilog-Example-Concise-Introduction-Design/dp/0983497303

phys364/lab24.tex page 6 of 25 2014-11-21 14:55

http://www.amazon.com/FPGA-Prototyping-Verilog-Examples-Spartan-3/dp/0470185325
http://www.amazon.com/Verilog-Example-Concise-Introduction-Design/dp/0983497303

(c) Now let’s explore what this Verilog program (called lab24_part1.v) is telling the FPGA
to do.

(i) The 8 green LEDs are numbered 0 to 7, from right to left. The 8 switches below the
LEDs are also numbered 0 to 7, from right to left. Each switch is 1=UP, 0=DOWN.
Move switches 0 and 1 back and forth to check that LED 0 shows the AND of switches
0 and 1. Check the behavior of the LED in response to the switches, and relate it to
the Verilog source code. (You can also double-click lab24_part1.v in sources tab of
ISE to open it up and edit it, if you like.)

(ii) Check that LED 7 is the AND of switches 6 and 7.

(iii) Now check that LED 1 is the NAND of switches 0 and 1.

(iv) Check that LED 2 is the OR of switches 0 and 1.

(v) Check that LED 3 is the NOR of switches 0 and 1, and again make sure you see how
it is done.

(vi) Check that LED 4 is the XOR of switches 0 and 1, and again look at the Verilog syntax.

(vii) Now notice the SR latch (the first flip-flop-like device that we studied in today’s read-
ing), implemented using two NOR gates. LED 5 displays the state, Q, of the SR latch.
Button 0 is the set input, and button 1 is the reset input. Check that the set and
reset features work as you expect, and check that LED 5 remembers whether the most
recent command was set vs. reset.

(viii) Also notice that button 3 is connected directly to LED 6, so that you can see that the
buttons are only on while you hold them down.

(d) Now let’s ask the Xilinx ISE software to show us in schematic form its interpretation
of this Verilog program. In the processes panel, click the (+) plus sign next to Synthe-
size, then double-click View RTL Schematic. (If you get a dialog box asking to choose
between two display options, choose the second option [“Start with a schematic of the top-
level block”] and uncheck the “show this dialog” option.) You will see a box indicating the
inputs and outputs of the top-level FPGA program. Double-click the box to see what is
inside. You will see what looks like a schematic diagram, with boxes for the various module
instances like myand1. Double-click on each of these boxes to look inside. Here is what I see
inside myand1, comfortingly enough:

phys364/lab24.tex page 7 of 25 2014-11-21 14:55

Look inside mysr1 (both the schematic and the original Verilog) and make sure that you
understand what became of the wire qbar that connects one NOR gate’s output with an
input of the other NOR gate.

Now hold down button 3 while you slide switches 0–6 up and down one at a time, and notice
what happens to the segments of the red 7-segment display. Notice that each of the display’s
7 segments is controlled by one switch.

Can you find a set of switch positions to spell out the numeral 5?

Now about the numeral 2?

Also notice what happens when you hold buttons 2 and 3 at the
same time. The figure may help to explain what is going on.
Notice that a single PNP transistor provides the power to each
of the four 7-segment displays, while the 7 wires controlling
the 7 segments of each LED are in fact shared between the
four 7-segment displays. This is a trick that the manufacturer
uses in order to reduce the number of required input/output
pins. (I/O pins are often a precious resource in electronics.) If
you want to use all four digits separately, you need to quickly
(e.g. once per millisecond) alternate between the four PNP
transistors, turning only one of them on at a time, while quickly
wiggling the 7 segments for each LED digit. I’ll do this for you
next week.

phys364/lab24.tex page 8 of 25 2014-11-21 14:55

Part 2
(To save time, you might just want to read through part 2 without actually doing any-
thing. This is the least important part of today’s lab.) Now replace the contents of your
lab24_part1.v file with the contents of the following lab24_part2.v , which you can
download from http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part2.v

. The easiest way to do this is to edit the contents of your existing lab24_part1.v in
ISE, then “select all,” then delete. Now just click on the lab24_part2.v file in your web
browser to display its contents. Click “control-A” to select all, then click “control-C” to
copy. Now go back to ISE and click “control-V” to paste, then “control-S” to save. The
result is that you’ve overwritten the old contents of lab24_part1.v with the online con-
tents of lab24_part2.v . Overwriting the old contents of lab24_part1.v may be somewhat
distasteful, but it is expedient.

1 //

2 // lab24_part2.v

3 // Verilog source code for Part 2 of Lab 24

4 // PHYS 364, UPenn, fall 2014

5 //

6

7 ‘default_nettype none

8

9 module lab24_part2

10 (

11 input mclk, // 25 MHz clock built into the BASYS2 board

12 output [6:0] seg, // red 7-segment display to draw numbers & letters

13 output dp, // decimal point for 7-seg (0=ON, 1=OFF)

14 output [3:0] an, // shared LED anode signal per 7-seg digit (0=ON)

15 output [7:0] led, // 8 green LEDs, just above sliding switches

16 input [7:0] sw, // 8 sliding switches (up=1, down=0)

17 input [3:0] btn, // 4 push buttons (normal=0, pushed=1)

18 input [4:1] ja, // 4 pins (JA, NW corner) can connect to breadboard

19 input [4:1] jb, // 4 pins (JB) can connect to breadboard

20 input [4:1] jc, // 4 pins (JC) can connect to breadboard

21 input [4:1] jd // 4 pins (JD, NE corner) can connect to breadboard

22);

23 assign led[0] = sw[0] & sw[1]; // LED0 is the AND of SW0 and SW1

24 assign led[7] = sw[6] & sw[7]; // LED7 is the AND of SW6 and SW7

25 assign led[1] = ~(sw[0] & sw[1]); // LED1 is the NAND of SW0 and SW1

26 assign led[2] = sw[0] | sw[1]; // LED2 is the OR of SW0 and SW1

27 assign led[3] = ~(sw[0] | sw[1]); // LED3 is the NOR of SW0 and SW1

28 assign led[4] = sw[0] ^ sw[1]; // LED4 is the XOR of SW0 and SW1

29 assign led[6] = btn[3]; // LED6 does whatever button 3 does

30

31 // LED5 is Q, BTN0 is SET, BTN1 is RESET, for SR latch

32 srlatch mysr1 (led[5], btn[0], btn[1]);

33

34 // These inputs are currently unused, but I connect them to some

phys364/lab24.tex page 9 of 25 2014-11-21 14:55

http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part2.v

35 // unnecessary logic so that the Xilinx compiler doesn’t complain

36 // about unused inputs.

37 wire dummy = ({ja,jb,jc,jd,mclk}==0);

38

39 // These outputs are currently unused, but I connect them anyway to

40 // keep the compiler from complaining.

41 assign seg[6:0] = sw[6:0];

42 assign dp = dummy;

43 assign an[3:0] = ~btn[3:0];

44 endmodule

45

46

47 module srlatch (output q, input s, input r);

48 wire qbar = ~(q | s);

49 assign q = ~(qbar | r);

50 endmodule

Then double-click generate programming file to make a lab24_part2.bit output file.
The behavior of this program is exactly the same as the behavior of lab24_part1.v . I
mainly just want you to see two different ways of writing the same program — in one case,
using many different modules to implement the various features, and in the other case,
writing the equations directly in one module.

The other thing worth looking at here is the Xilinx compiler’s schematic diagram representing
this Verilog file. Again, in the processes panel, click the (+) plus sign next to Synthesize,
then double-click View RTL Schematic. Then double-click the box representing the top-
level FPGA program. Now the AND and OR gates are sitting at the top level. There are
some inverters to convert the outputs into NAND and NOR. (PLEASE NOTE: it took
me more than one try to get ISE to show me an up-to-date schematic diagram. I ended up
doing Project→“Cleanup Project Files,” then quitting and restarting ISE, then re-running
Synthesize, and then finally “View RTL Schematic.”)

phys364/lab24.tex page 10 of 25 2014-11-21 14:55

Part 3
This time, let’s create a new Xilinx project with the New Project wizard. First download
these two source-code files:
http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part3.v

http://positron.hep.upenn.edu/wja/p364/2014/files/basys2.ucf

In the Xilinx ISE program, click File→New Project. Choose a project name and location,
and set the top-level source type to “HDL.”

In the next dialog, set Product Category to “General Purpose,” set Family to “Spar-
tan3E,” set Device to “XC3S100E,” set Package to “CP132,” and set Speed to “-4.” Click
next.

In the Project Summary dialog, just click finish.

Now from the Project menu, choose Add Source. Add both lab24_part3.v and basys2.ucf ,
which you just downloaded a moment ago.

Now in the processes panel, right-click Generate Programming File and click Process
Properties. Under the Startup Options category, change FPGA Start-Up Clock to
“JTAG Clock,” and click OK.

Now in the processes panel, right-click Generate Programming File and click Run.
The result (after a moment) will be a file lab24_part3.bit that you can load into the
board using the ADEPT software. If you have trouble with the compiler, you can copy my
lab24_part3.bit from
http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part3.bit

(a) The Verilog source code for lab24_part3.v is included below. Look through the code
for the add4bit module and see if you can relate it to the 4-bit adder that we discussed in
today’s reading. Each bit of the sum is a 3-way XOR of two input bits and one carry bit,
so that it is HIGH only if an odd number of these three bits are HIGH. Each carry bit is a
3-way OR, each term of which is an AND, such that the carry bit is HIGH only if two or
more of these three bits are HIGH. Stare at this (and ask questions) until this makes sense.

phys364/lab24.tex page 11 of 25 2014-11-21 14:55

http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part3.v
http://positron.hep.upenn.edu/wja/p364/2014/files/basys2.ucf
http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part3.bit

1 //

2 // lab24_part3.v

3 // Verilog source code for Part 3 of Lab 24

4 // PHYS 364, UPenn, fall 2014

5 //

6

7 ‘default_nettype none

8

9 module lab24_part3

10 (

11 input mclk, // 25 MHz clock built into the BASYS2 board

12 output [6:0] seg, // red 7-segment display to draw numbers & letters

13 output dp, // decimal point for 7-seg (0=ON, 1=OFF)

14 output [3:0] an, // shared LED anode signal per 7-seg digit (0=ON)

15 output [7:0] led, // 8 green LEDs, just above sliding switches

16 input [7:0] sw, // 8 sliding switches (up=1, down=0)

17 input [3:0] btn, // 4 push buttons (normal=0, pushed=1)

18 input [4:1] ja, // 4 pins (JA, NW corner) can connect to breadboard

19 input [4:1] jb, // 4 pins (JB) can connect to breadboard

20 input [4:1] jc, // 4 pins (JC) can connect to breadboard

21 input [4:1] jd // 4 pins (JD, NE corner) can connect to breadboard

22);

23

24 // These wires give understandable names to the inputs of

25 // the 4-bit adder, just to make the connections more clear.

26 wire a0 = sw[0]; // switches 0-3 will be a0, a1, a2, a3

27 wire a1 = sw[1];

28 wire a2 = sw[2];

29 wire a3 = sw[3];

30 wire b0 = sw[4]; // switches 4-7 will be b0, b1, b2, b3

31 wire b1 = sw[5];

32 wire b2 = sw[6];

33 wire b3 = sw[7];

34 wire cin = btn[3]; // push-button 3 will be carry-in

35 wire cout, s3, s2, s1, s0; // for the outputs of the 4-bit adder

36 add4bit myadder1 (cout, s3, s2, s1, s0,

37 a3, a2, a1, a0,

38 b3, b2, b1, b0, cin);

39 assign led[0] = s0; // LEDs 0-3 are the adder’s SUM bits

40 assign led[1] = s1;

41 assign led[2] = s2;

42 assign led[3] = s3;

43 assign led[4] = cout; // LED4 is carry-out of the ader

44

45 // Assign dummy values to output pins that are currently unused

46 assign {led[7:5],seg[6:0],dp} = 0;

47 assign an[3:0] = 4’b1111;

phys364/lab24.tex page 12 of 25 2014-11-21 14:55

48 endmodule

49

50

51 // This is the 4-bit adder circuit that we saw in

52 // the reading assignment. It’s the second version,

53 // which includes carry-in and carry-out pins, so that

54 // in principle you can chain two of them together to

55 // make an 8-bit adder, etc.

56 module add4bit (output cout, output s3, output s2, output s1, output s0,

57 input a3, input a2, input a1, input a0,

58 input b3, input b2, input b1, input b0, input cin);

59 wire c0 = (a0 & b0) | (a0 & cin) | (b0 & cin);

60 wire c1 = (a1 & b1) | (a1 & c0) | (b1 & c0);

61 wire c2 = (a2 & b2) | (a2 & c1) | (b2 & c1);

62 assign cout = (a3 & b3) | (a3 & c2) | (b3 & c2);

63 assign s0 = a0 ^ b0 ^ cin;

64 assign s1 = a1 ^ b1 ^ c0;

65 assign s2 = a2 ^ b2 ^ c1;

66 assign s3 = a3 ^ b3 ^ c2;

67 endmodule

(b) Now look at the lines in the main lab24_part3 module where the add4bit module is
instantiated, i.e. where the adder is plunked down onto the lab24_part3 schematic. Notice
that the adder inputs a3 a2 a1 a0 come from switches 3–0 and that the adder inputs b3

b2 b1 b0 come from swtiches 7–4. Then notice that the adder outputs cout s3 s2 s1 s0

go to LEDs 4–0. Slide the switches up and down to spell out two 4-bit binary numbers A
and B, and check that the adder displays the sum A + B on the LEDs. You can also use
push-button 3 to assert the cin input of the adder if you like. The reason that an adder has
a cin input is so that you can e.g. chain together two 4-bit adders to make an 8-bit adder,
and so on.

How did you check that the adder works as expected?

phys364/lab24.tex page 13 of 25 2014-11-21 14:55

Part 4

Thus far (with just one exception), we’ve implemented purely combinational logic in the
Xilinx FPGA, using the Verilog programming language. We’ve made a 4-bit adder add
up the two 4-bit numbers specified by the positions of the 8 sliding switches, and we’ve
displayed the adder’s outputs on 5 green LEDs. The one piece of sequential logic that we
implemented was a single SR latch, which could remember whether the set or reset button
had been pressed more recently, as indicated by lighting (or not lighting) an LED to display
the latch’s Q state.

Let’s continue now by programming the FPGA to implement the 4-bit counter that you
so tediously wired up in Lab 23 (though this version will include the carry-in bit as well):

This counter consists of a 4-bit adder and four D-type flip-flops. The counter’s present
value is represented by the states of the four flip-flop outputs: Q3, Q2, Q1, Q0. On each clock
cycle, the constant binary value 0001 is added to the counter’s present value.

Here was the verilog code for the adder:

1 module add4bit (output cout, output s3, output s2, output s1, output s0,

2 input a3, input a2, input a1, input a0,

3 input b3, input b2, input b1, input b0, input cin);

4 wire c0 = (a0 & b0) | (a0 & cin) | (b0 & cin);

5 wire c1 = (a1 & b1) | (a1 & c0) | (b1 & c0);

phys364/lab24.tex page 14 of 25 2014-11-21 14:55

6 wire c2 = (a2 & b2) | (a2 & c1) | (b2 & c1);

7 assign cout = (a3 & b3) | (a3 & c2) | (b3 & c2);

8 assign s0 = a0 ^ b0 ^ cin;

9 assign s1 = a1 ^ b1 ^ c0;

10 assign s2 = a2 ^ b2 ^ c1;

11 assign s3 = a3 ^ b3 ^ c2;

12 endmodule

It turns out that the following recipe is how you tell Verilog to make a D-type flip-flop. For
the moment, just treat it as a magic incantation. I will put some explanation of what it means
into the reading. The basic idea is that whereas a wire merely connects two things together
(like a wire on your breadboard), a reg can maintain an internal state. The statement

always @ (posedge clk) q_reg <= d;

tells Verilog that every time it detects a positive edge (i.e. a low-to-high transition) on the
clk input, it should update q reg to reflect the present state of the d input. That sounds
just like the behavior of a DFF!

1 // This magic incantation is how you tell the Xilinx

2 // compiler to make a D-type flip-flop. Just accept

3 // it as an idiom, rather than trying at this stage

4 // to follow exactly what the syntax means. But the

5 // jist of it is that whenever a positive edge of the

6 // clk signal is seen, the contents of d are copied to

7 // the new contents of ’q_reg’, which in turn is wired

8 // to the ’q’ output of this circuit. We will use this

9 // module in parts 4 and 5.

10 module dflipflop (output q, input clk, input d);

11 reg q_reg;

12 always @ (posedge clk) q_reg <= d;

13 assign q = q_reg;

14 endmodule

phys364/lab24.tex page 15 of 25 2014-11-21 14:55

Putting all of the pieces together looks like this:

1 //

2 // lab24_part4.v

3 // Verilog source code for Lab 24 part 4

4 // PHYS 364, UPenn, fall 2014

5 //

6

7 ‘default_nettype none

8

9 module lab24_part4

10 (

11 input mclk, // 25 MHz clock built into the BASYS2 board

12 output [6:0] seg, // red 7-segment display to draw numbers & letters

13 output dp, // decimal point for 7-seg (0=ON, 1=OFF)

14 output [3:0] an, // shared LED anode signal per 7-seg digit (0=ON)

15 output [7:0] led, // 8 green LEDs, just above sliding switches

16 input [7:0] sw, // 8 sliding switches (up=1, down=0)

17 input [3:0] btn, // 4 push buttons (normal=0, pushed=1)

18 input [4:1] ja, // 4 pins (JA, NW corner) can connect to breadboard

19 input [4:1] jb, // 4 pins (JB) can connect to breadboard

20 input [4:1] jc, // 4 pins (JC) can connect to breadboard

21 input [4:1] jd // 4 pins (JD, NE corner) can connect to breadboard

22);

23

24 // an[3] is Q, btn[0] is SET, btn[1] is RESET, for SR latch

25 wire srq;

26 srlatch mysr1 (srq, btn[0], btn[1]);

27 // make the left-most 7-segment LED light up if Q is true

28 assign an[3] = ~srq;

29

30 // We will use the ’Q’ output of the SR latch as a clock

31 // for the counter’s flip-flops, so that we can clock the

32 // counter by hand, one clock cycle at a time.

33 wire clock = srq;

34

35 // Define wires for the adder’s S (sum) and COUT (carry) outputs

36 wire s3, s2, s1, s0, cout;

37 // The adder’s CIN (carry in) will always be zero

38 wire cin = 0;

39 // The adder’s B input will always be binary constant 0001

40 wire b3=0, b2=0, b1=0, b0=1;

41 // The adder’s A inputs will be the flip flops’ Q outputs

42 wire q3, q2, q1, q0;

43 add4bit myadder1 (cout,

44 s3, s2, s1, s0,

45 q3, q2, q1, q0,

46 b3, b2, b1, b0, cin);

phys364/lab24.tex page 16 of 25 2014-11-21 14:55

47 // Each flip-flop’s D input will be one of the adder’s

48 // S (sum) output bits

49 dflipflop mydff3 (q3, clock, s3);

50 dflipflop mydff2 (q2, clock, s2);

51 dflipflop mydff1 (q1, clock, s1);

52 dflipflop mydff0 (q0, clock, s0);

53

54 // Let the left four LEDs show the adder’s S (sum) outputs

55 assign led[7] = s3;

56 assign led[6] = s2;

57 assign led[5] = s1;

58 assign led[4] = s0;

59

60 // Let the right four LEDs show the flip flops’ Q outputs

61 assign led[3] = q3;

62 assign led[2] = q2;

63 assign led[1] = q1;

64 assign led[0] = q0;

65

66 // Light up all 7 segments (plus decimal) for any 7-segment digit

67 // that is activated. Digits 2,1,0 simply indicate whether buttons

68 // 2,1,0 are pressed. Digit 3 indicates the state of the SR latch

69 // (see comment above for an[3]).

70 assign seg[6:0] = 0;

71 assign dp = 0;

72 assign an[2:0] = ~btn[2:0];

73 endmodule

74

75

76 // four-bit adder

77 module add4bit (output cout, output s3, output s2, output s1, output s0,

78 input a3, input a2, input a1, input a0,

79 input b3, input b2, input b1, input b0, input cin);

80 wire c0 = (a0 & b0) | (a0 & cin) | (b0 & cin);

81 wire c1 = (a1 & b1) | (a1 & c0) | (b1 & c0);

82 wire c2 = (a2 & b2) | (a2 & c1) | (b2 & c1);

83 assign cout = (a3 & b3) | (a3 & c2) | (b3 & c2);

84 assign s0 = a0 ^ b0 ^ cin;

85 assign s1 = a1 ^ b1 ^ c0;

86 assign s2 = a2 ^ b2 ^ c1;

87 assign s3 = a3 ^ b3 ^ c2;

88 endmodule

89

90

91 // magic incanation to make a D-type flip-flop

92 module dflipflop (output q, input clk, input d);

93 reg q_reg;

phys364/lab24.tex page 17 of 25 2014-11-21 14:55

94 always @ (posedge clk) q_reg <= d;

95 assign q = q_reg;

96 endmodule

97

98

99 // S-R latch (the simplest kind of flip-flop)

100 module srlatch (output q, input s, input r);

101 wire qbar;

102 nor mynorgate1 (qbar, q, s);

103 nor mynorgate2 (q, qbar, r);

104 endmodule

Download http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part4.v and
use its contents to replace the present contents of your ISE project’s lab24_part1.v (or
whatever is the name of the Verilog source file in your open ISE project). If you don’t
already have an ISE project open from Part 3 (maybe you took a break after Part 3), you
can find a .zip file containing a fresh ISE project at
http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part4.zip

whose contents you can just extract into a new folder, then double-click on lab24_part4.xise

it that folder to open the ISE project. In case you have technical difficulties with the Xilinx
compiler, I’ve put a pre-compiled version of lab24_part4.bit at
http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part4.bit

Notice that we connected one of the adder’s two inputs to the binary constant 0001 and the
other input to the Q outputs of the four flip-flops. On each rising edge of the clock signal,
the sum increments by 1.

Notice that the 4-bit output of the adder is displayed on LEDs 7,6,5,4, and notice that the
4 flip-flop Q outputs are displayed on LEDs 3,2,1,0.

For a clock signal, we are using the Q output of an SR latch, whose reset input is button 1
and whose set input is button 0. You can monitor the present value of the latch’s Q output
by looking at the left-most digit of the 7-segment display. By alternatively pressing buttons
1 and 0, you can manually clock the counter.

Try clocking the counter by pushing (alternately) buttons 1 and 0.

Notice that the four Q bits from the DFFs are always one clock cycle behind the four S bits
of the adder. In other words, the value displayed on the right 4 LEDs just after the clock
edge is the value that had been displayed on the left 4 LEDs just before the clock edge.

Take the time to understand how the Verilog code is equilvalent to the schematic diagram
shown above.

phys364/lab24.tex page 18 of 25 2014-11-21 14:55

http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part4.v
http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part4.zip
http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part4.bit

Now modify the program so that the B input bits to the adder are the switch values
sw[3], sw[2], sw[1], sw[0] instead of the constant values 0, 0, 0, 1. Indicate below how
you modified the program.

Now you will need to set the right four switches to DOWN, DOWN, DOWN, UP to get the
counter to count up by ones. Give it a try! Can you make the counter count up by twos?
By threes?

What settings should you use on the four switches to make your counter count DOWN by
ones? Hint: do you remember the 4-bit two’s complement representation for −1?

phys364/lab24.tex page 19 of 25 2014-11-21 14:55

Part 5

Now we’re going to connect 8 D-type flipflops together into a shift register. This configu-
ration is also known as a pipeline, because data flows from one flip-flop to the next on each
clock cycle, as if it were moving through a pipe. The motion is also analogous to that of a
factory assembly line.

The schematic diagram looks something like this, though I only drew 4 of the 8 flip-flops
here:

Here is the Verilog code that is equilvalent to the above schematic (but with 8 DFFs instead
of just 4):

1 // The first flip-flop’s D input will be sw[0] (the right-most

2 // switch). Each subsequent flip-flop’s D input will be the

3 // previous flip-flop’s Q output.

4 wire q7, q6, q5, q4, q3, q2, q1, q0;

5 dflipflop mydff0 (q0, clock, sw[0]);

6 dflipflop mydff1 (q1, clock, q0);

7 dflipflop mydff2 (q2, clock, q1);

8 dflipflop mydff3 (q3, clock, q2);

9 dflipflop mydff4 (q4, clock, q3);

10 dflipflop mydff5 (q5, clock, q4);

11 dflipflop mydff6 (q6, clock, q5);

12 dflipflop mydff7 (q7, clock, q6);

Notice that each flip-flop’s D input is connected to the previous flip-flop’s Q output. We
also send all of the Q outputs to the 8 green LEDs:

1 // Display the 8 flip flops’ Q values on the 8 green LEDs.

2 assign led[7] = q7;

3 assign led[6] = q6;

4 assign led[5] = q5;

5 assign led[4] = q4;

6 assign led[3] = q3;

7 assign led[2] = q2;

8 assign led[1] = q1;

9 assign led[0] = q0;

phys364/lab24.tex page 20 of 25 2014-11-21 14:55

Here is the complete program, which you should download from
http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part5.v You can paste
the contents into the ISE editor in place of your previous contents of lab24_part4.v .

1 //

2 // lab24_part5.v

3 // Verilog source code for Lab 24 (part 5)

4 // PHYS 364, UPenn, fall 2014

5 //

6

7 ‘default_nettype none

8

9 module lab24_part5

10 (

11 input mclk, // 25 MHz clock built into the BASYS2 board

12 output [6:0] seg, // red 7-segment display to draw numbers & letters

13 output dp, // decimal point for 7-seg (0=ON, 1=OFF)

14 output [3:0] an, // shared LED anode signal per 7-seg digit (0=ON)

15 output [7:0] led, // 8 green LEDs, just above sliding switches

16 input [7:0] sw, // 8 sliding switches (up=1, down=0)

17 input [3:0] btn, // 4 push buttons (normal=0, pushed=1)

18 input [4:1] ja, // 4 pins (JA, NW corner) can connect to breadboard

19 input [4:1] jb, // 4 pins (JB) can connect to breadboard

20 input [4:1] jc, // 4 pins (JC) can connect to breadboard

21 input [4:1] jd // 4 pins (JD, NE corner) can connect to breadboard

22);

23

24 // an[3] is Q, btn[0] is SET, btn[1] is RESET, for SR latch

25 wire srq;

26 srlatch mysr1 (srq, btn[0], btn[1]);

27 // make the left-most 7-segment LED light up if Q is true

28 assign an[3] = ~srq;

29

30 // We will use the ’Q’ output of the SR latch as a clock

31 // for the counter’s flip-flops, so that we can clock the

32 // counter by hand, one clock cycle at a time.

33 wire clock = srq;

34

35 // The first flip-flop’s D input will be sw[0] (the right-most

36 // switch). Each subsequent flip-flop’s D input will be the

37 // previous flip-flop’s Q output.

38 wire q7, q6, q5, q4, q3, q2, q1, q0;

39 dflipflop mydff0 (q0, clock, sw[0]);

40 dflipflop mydff1 (q1, clock, q0);

41 dflipflop mydff2 (q2, clock, q1);

42 dflipflop mydff3 (q3, clock, q2);

43 dflipflop mydff4 (q4, clock, q3);

44 dflipflop mydff5 (q5, clock, q4);

phys364/lab24.tex page 21 of 25 2014-11-21 14:55

http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part5.v

45 dflipflop mydff6 (q6, clock, q5);

46 dflipflop mydff7 (q7, clock, q6);

47

48 // Display the 8 flip flops’ Q values on the 8 green LEDs.

49 assign led[7] = q7;

50 assign led[6] = q6;

51 assign led[5] = q5;

52 assign led[4] = q4;

53 assign led[3] = q3;

54 assign led[2] = q2;

55 assign led[1] = q1;

56 assign led[0] = q0;

57

58 // Light up all 7 segments (plus decimal) for any 7-segment digit

59 // that is activated. Digits 2,1,0 simply indicate whether buttons

60 // 2,1,0 are pressed. Digit 3 indicates the state of the SR latch

61 // (see comment above for an[3]).

62 assign seg[6:0] = 0;

63 assign dp = 0;

64 assign an[2:0] = ~btn[2:0];

65 endmodule

66

67

68 // D-type flip-flop (treat this as a magic incantation for now)

69 module dflipflop (output q, input clk, input d);

70 reg q_reg;

71 always @ (posedge clk) q_reg <= d;

72 assign q = q_reg;

73 endmodule

74

75

76 // SR latch

77 module srlatch (output q, input s, input r);

78 wire qbar;

79 nor mynorgate1 (qbar, q, s);

80 nor mynorgate2 (q, qbar, r);

81 endmodule

Once you have the program compiled and loaded into your FPGA board, try clocking the
flip-flops by alternately pressing buttons 1 and 0 (which alternately sets and resets the SR
latch whose Q output supplies the clock signal). If you do this with SW0 in the DOWN
position, you should see nothing very interesting happen.

Now set SW0 to the UP position. You should see the LEDs light up one-by-one.

Try setting SW0 back to the DOWN position. You should see darkness shift left clock-by-

phys364/lab24.tex page 22 of 25 2014-11-21 14:55

clock in the same way as you saw light shifting left before.

Keep clocking in ZEROs until all of the LEDs are off. Now clock in a single ONE bit. In
other words, flip SW0 to UP, then do a single clock cycle, then flip SW0 back to DOWN,
then keep clocking. Do you see how the single ONE bit shifts from right to left? Briefly
explain what is happening.

A shift register is sometimes used to delay data so that they can be kept around while a
lengthy computation completes. The length of a shift register is analogous to the length of
the pipeline on your home computer’s microprocessor.

phys364/lab24.tex page 23 of 25 2014-11-21 14:55

Part 6

Now here is a slightly different kind of D-type flip-flop. It has an additional input called
enable. This is the type of flip-flop that I use most commonly in my own elecronics-design
work.

1 // This magic incantation is how you tell the Xilinx compiler to make

2 // a D-type flip-flop with the ENABLE feature.

3 module dffe (output q, input clk, input d, input enable);

4 reg q_reg;

5 always @ (posedge clk) if (enable) q_reg <= d;

6 assign q = q_reg;

7 endmodule

Now we’re going to modify the main part of the Part 5 program to look like this instead:

1 // Now we set up 8 D-type flip-flops that have an additional

2 // input wire called ENABLE. If ENABLE is TRUE, then the

3 // flip-flop behaves exactly as an ordinary DFF. But if ENABLE

4 // is FALSE, then the DFF does nothing.

5

6 // Now we connect each flip flop’s D input to the NOT of its own

7 // Q output. So if ENABLE is asserted, the flip-flop just toggles

8 // back and forth between 0 and 1. But if ENABLE is deasserted,

9 // the flip-flop does nothing.

10 wire q7, q6, q5, q4, q3, q2, q1, q0;

11 wire d7 = ~q7;

12 wire d6 = ~q6;

13 wire d5 = ~q5;

14 wire d4 = ~q4;

15 wire d3 = ~q3;

16 wire d2 = ~q2;

17 wire d1 = ~q1;

18 wire d0 = ~q0;

19

20 // Here is the tricky part: the first flip flop is always enabled.

21 // The second flip flop is only enabled if the first one is HIGH.

22 // The third flip flop is only enabled if the first two are HIGH.

23 // The fourth is only enabled if the first three are HIGH. Etc.

24 wire e0 = 1;

25 wire e1 = q0;

26 wire e2 = q0 & q1;

27 wire e3 = q0 & q1 & q2;

28 wire e4 = q0 & q1 & q2 & q3;

29 wire e5 = q0 & q1 & q2 & q3 & q4;

30 wire e6 = q0 & q1 & q2 & q3 & q4 & q5;

31 wire e7 = q0 & q1 & q2 & q3 & q4 & q5 & q6;

phys364/lab24.tex page 24 of 25 2014-11-21 14:55

32 dffe mydff0 (q0, clock, d0, e0);

33 dffe mydff1 (q1, clock, d1, e1);

34 dffe mydff2 (q2, clock, d2, e2);

35 dffe mydff3 (q3, clock, d3, e3);

36 dffe mydff4 (q4, clock, d4, e4);

37 dffe mydff5 (q5, clock, d5, e5);

38 dffe mydff6 (q6, clock, d6, e6);

39 dffe mydff7 (q7, clock, d7, e7);

Can you guess what this program will do?! See if you can figure out what it is doing
and why it works.

You can find the complete source code at
http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part6.v Download this
file and study it until it makes sense to you. Then paste its contents into your ISE editor
in place of the contents of the Part 5 Verilog file that you have open. Then compile it and
load the resulting lab24_part6.bit into your board. If you run into technical difficulties,
you can find a pre-compiled .bit file at
http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part6.bit

phys364/lab24.tex page 25 of 25 2014-11-21 14:55

http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part6.v
http://positron.hep.upenn.edu/wja/p364/2014/files/lab24_part6.bit

