
Physics 364, Fall 2014, Lab #27 Name:
(Field Programmable Gate Arrays: 4)

Monday, December 8 (section 401); Tuesday, December 9 (section 402)

Course materials and schedule are at http://positron.hep.upenn.edu/p364

This file: http://positron.hep.upenn.edu/wja/p364/2014/files/lab27.pdf

Useful files: http://positron.hep.upenn.edu/wja/p364/2014/files/?C=M;O=D

Part 1
The first state machine we will study today is a kind of player piano. It reads from a memory
a sequence of notes and durations, and plays the tune on a speaker. For each note to be
played, the memory contains a 16-bit duration (in milliseconds) and a 16-bit half-period (in
microseconds). One FPGA output pin will be connected to a speaker. To play a given tone,
the FPGA will drive this output pin HIGH (+3.3 V) for one half-period, then LOW (0 V)
for one half-period, then HIGH for one half-period, then LOW for one half-period, and so
on. It continues to play this tone until the desired duration has elapsed. So to play the
A note (f = 440 Hz, T = 1

f
= 2272.7 µs) above middle C for a duration of one second,

we would drive the output pin HIGH for 1136 µs, then LOW for 1136 µs, and so on, until
1000 ms have elapsed.

A .zip archive of the files for Part 1, including a pre-made ISE project file, are at
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27.zip

If you want to look at the Verilog file on its own, you can either view it within the ISE
software or follow this link:
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part1.v

A key goal of today’s lab is for you to see how much more powerful a state machine becomes
when it is combined with a memory that contains a list of tasks for it to carry out. This
concept may inspire you to go in your own direction. Feel free at any time to modify this
program to do something slightly different, or to ask us for help with modifying it to suit
your interests. If you’re uninspired by today’s lab, feel free to ponder project ideas.

ROM
To store the desired information, we use a 256 × 16 ROM (Read Only Memory), i.e. 256
storage locations, each of which is 16 bits wide. That means that the input to our ROM is 8
address lines, address[7:0], and the output of our ROM is 16 data lines, dataout[15:0].
There are several ways to describe a ROM in Verilog. The method used here maps directly
onto last week’s discussion of a ROM as a special case of a multiplexer.

1 // 256x16 ROM, i.e. 256 storage locations, each of which is 16 bits wide;

2 // how exactly you get Verilog to infer a ROM, a RAM, etc. is somewhat

3 // idiomatic and depends on the FPGA vendor’s software (e.g. Xilinx);

4 // this is one acceptable way to tell Xilinx that you want a ROM

phys364/lab27.tex page 1 of 27 2014-12-08 12:49

http://positron.hep.upenn.edu/p364
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27.pdf
http://positron.hep.upenn.edu/wja/p364/2014/files/?C=M;O=D
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27.zip
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part1.v

5 module rom256x16 (output [15:0] dataout,

6 input [7:0] address);

7 wire [7:0] A = address; // abbreviation to reduce typing

8 // white piano keys starting from middle C:

9 // note: C D E F G A B C

10 // f (Hz): 262 294 330 349 392 440 494 523

11 // T/2 (us): 1911 1703 1517 1432 1276 1136 1012 956

12 assign dataout =

13 // duration halfperiod

14 A== 0 ? 1000 : A== 1 ? 1517 :

15 A== 2 ? 1000 : A== 3 ? 1703 :

16 A== 4 ? 1000 : A== 5 ? 1911 :

17 A== 6 ? 1000 : A== 7 ? 1703 :

18 A== 8 ? 1000 : A== 9 ? 1517 :

19 A== 10 ? 1000 : A== 11 ? 1517 :

20 A== 12 ? 1000 : A== 13 ? 1517 :

21 A== 14 ? 1000 : A== 15 ? 1703 :

22 A== 16 ? 1000 : A== 17 ? 1703 :

23 A== 18 ? 1000 : A== 19 ? 1703 :

24 A== 20 ? 1000 : A== 21 ? 1517 :

25 A== 22 ? 1000 : A== 23 ? 1276 :

26 A== 24 ? 1500 : A== 25 ? 1276 :

27 A== 26 ? 1000 : A== 27 ? 0 : // rest 1s

28 ...

29 A==250 ? 0 : A==251 ? 0 :

30 A==252 ? 0 : A==253 ? 0 :

31 A==254 ? 0 : A==255 ? 0 : 0 ;

32 endmodule

We store duration in even-numbered addresses and halfperiod in odd-numbered addresses.
So we need to read from two successive addresses to play a given note. We use the special
case halfperiod==0 to represent a musical “rest,” i.e. to represent silence, e.g. at A = 27.

In the special case duration==0, we use the corresponding halfperiod value to inducate
the address from which the machine should subsequently start reading. This allows us to do
a “GOTO” operation, so that at the end of a tune, we can go back and play the same tune
again.

State diagram
Shown below is a state diagram for the machine that reads this ROM to play out a tune.
We use a Verilog statement called “localparam” to assign state names such as START,
FETCHDURA, FETCHPITCH, etc., to the integer state numbers 0, 1, 2, etc.

1 // Enumerate the possible states of our state machine

2 localparam

3 START=0, // initial state: reset goes here

4 FETCHDURA=1, // fetch next note’s duration (unit=millisecond)

5 FETCHPITCH=2, // fetch next note’s half-period (unit=microsecond)

6 GOTO=3, // special case (duration==0): GOTO new memory address

7 WIGGLE0=4, // output bit is LOW for one-half period

phys364/lab27.tex page 2 of 27 2014-12-08 12:49

8 WIGGLE1=5, // output bit is HIGH for one-half period

9 NOTEDONE=6, // finished playing a note

10 NOTEGAP=7; // pause briefly before moving on to next note

State representation in Verilog
Since there are 8 states, we use a 3-bit-wide D-type flip-flop to hold the current state of
the machine, called state. The logic to decide which state to enter on the next clock cycle
manipulates the wires called nextstate.

phys364/lab27.tex page 3 of 27 2014-12-08 12:49

Here is the 3-bit-wide D-type flip-flop that holds the present state of the machine:

1 // We’ll use a 3-bit D-type flip-flop to hold the state of the FSM

2 wire [2:0] state, nextstate;

3 dffe_Nbit #(.N(3)) mystatedff

4 (.q(state), // on each rising edge of the clock, the flip-flop

5 .d(nextstate), // copies ’nextstate’ (D) to ’state’ (Q)

6 .clock(clock), // clocked at 1 MHz

7 .enable(1), // always enabled

8 .reset(reset)); // reset to initial state by pushing button

Next-state logic
The nextstate logic determines which state we go into on the next clock cycle:

1 // Compute next state based on current state and pertinent conditions

2 assign nextstate =

3 (reset || stopthenoise) ? START : // go here if reset

4 (state==START || forcenewaddress) ? FETCHDURA :

5 (state==FETCHDURA) ? FETCHPITCH :

6 (state==FETCHPITCH && zeroduration) ? GOTO : // dur==0 means GOTO

7 (state==FETCHPITCH) ? WIGGLE0 :

8 (state==GOTO) ? FETCHDURA :

9 (state==WIGGLE0 && durationup) ? NOTEDONE : // end of this note?

10 (state==WIGGLE0 && zeroperiod) ? WIGGLE0 : // rest vs. tone

11 (state==WIGGLE0 && wigglenow) ? WIGGLE1 : // wiggle up & down

12 (state==WIGGLE1 && durationup) ? NOTEDONE :

13 (state==WIGGLE1 && wigglenow) ? WIGGLE0 :

14 (state==NOTEDONE) ? NOTEGAP :

15 (state==NOTEGAP && notegapdone) ? FETCHDURA : // pause betw. notes

16 /* default: stay in same state */ state ;

If you compare the above code snippet with the state diagram, you should see that the code
is expressing the same state transitions as the diagram.

• If we press the reset button (btn[0], the right-hand button), or if we slide the
stopthenoise switch (sw[0], the right-hand switch) upward, then the machine goes
to the START state. This is also where it starts when we first program the FPGA.

• From the START state, the next state is always the FETCHDURA state (where we fetch
from ROM the duration of the next note)

– The FETCHDURA state goes to the next ROM address (which should be an even-
numbered address) and records the 16-bit “duration” (in milliseconds) of the next
note to play.

– We will also go into the FETCHDURA state if the forcenewaddress button is
pressed (which is btn[1], the second button from the right). This button allows
the you to directly modify the machine’s address, so that the machine subse-
quently starts playing music from that address.

• From the FETCHDURA state, the next state is always the FETCHPITCH state.

phys364/lab27.tex page 4 of 27 2014-12-08 12:49

– The FETCHPITCH state goes to the next ROM address (which should be an odd-
numbered address) and records the 16-bit “halfperiod” (in microseconds) of the
next note to play.

• From the FETCHPITCH state, there are two possible next states:

– By far the most common transition is to go to the WIGGLE0 state, which is used
along with WIGGLE1 to make the output bit oscillate (wiggle) back and forth to
make the desired musical tone.

– But in the special case in which the “duration” value is zero, we interpret this
to mean that the “halfperiod” value actually represents the next memory address
from which we should continue reading musical notes. In that case, the next state
will be the GOTO state, to handle this change of address.

• If we happen to have wound up in the GOTO state, the next state from there is always
the FETCHDURA state, from which the process begins of fetching from memory the next
musical note to play.

– Again, the point of the GOTO state is to make the memory address jump discon-
tinuously to a new location. Normally the memory address just increases by one
step at a time, incrementing once to find a new duration and then incrementing
again to find a new pitch.

– We will look at the address-update logic in a moment.

• While a note is playing, we go back and forth between the WIGGLE0 state and the
WIGGLE1 state.

– If we’re in WIGGLE0, the output bit (to the speaker) is LOW; if we’re in WIGGLE1,
the output bit is HIGH.

– We reset a microsecond counter to zero before entering the WIGGLE0 or WIGGLE1

state. When the counter reaches the halfperiod value, we know it is time to
transition to the other state, so that the output pin goes back and forth between
LOW and HIGH at the correct oscillation period.

– Meanwhile, in the FETCHPITCH state, we reset a millisecond counter to zero. If the
number of milliseconds elapsed reaches the duration value, we know it is time to
transition to the NOTEDONE state, to finish up playing this note and move on.

– There is one more special case: if halfperiod is zero, indicating that we should
play silence (a rest) rather than a note, then we just stay in the WIGGLE0 state
instead of going back and forth between WIGGLE0 and WIGGLE1.

• From the NOTEDONE state, we always go to the NOTEGAP state.

– The purpose of this state is to put a small (currently 25 milliseconds) gap between
notes, so that your ear can hear the difference between two consecutive eighth-
notes and a single quarter-note at the same pitch.

– I didn’t realize that I needed this state until I heard how terrible Mary Had a
Little Lamb sounded without it.

phys364/lab27.tex page 5 of 27 2014-12-08 12:49

• If not otherwise specified, we just remain in the same state for the next clock cycle.

ROM address & instantiation
Next, the ROM connections. The memory address from which to read is stored in an 8-bit
D-type flip-flop. We again use the generalized dffe_Nbit with #(.N(8)) to indicate an
8-bit-wide flip-flop.

1 // Use an 8-bit D-type flip-flop to hold the memory address

2 // from which the state machine is reading

3 wire [7:0] memory_addr, memory_nextaddr;

4 dffe_Nbit #(.N(8)) memaddrff

5 (.q(memory_addr),

6 .d(memory_nextaddr),

7 .clock(clock),

8 .enable(1), .reset(0));

Next, we instantiate the ROM and make connections for address (input) and data (output):

1 // We will store the desired tune to be played in a ROM (Read-Only

2 // Memory) with 256 locations, each of which can store a 16-bit number;

3 // declare wires to store the ’dataout’ value from the memory, as well

4 // as the ’duration’ and ’halfperiod’ that will be copied (via flip-flops)

5 // from the ’memory_data’ wires

6 wire [15:0] memory_data, duration, halfperiod;

7 rom256x16 myrom1

8 (.dataout(memory_data), // data comes out

9 .address(memory_addr)); // address goes in

Here is the logic to decide what ROM address to read from on the next clock cycle:

1 // Compute what memory address we will read from on next clock cycle

2 assign memory_nextaddr =

3 (btn[1]) ? sw[7:0] : // button1: goto switch address!

4 (state==START) ? 0 : // start reading from zero

5 (state==FETCHDURA) ? memory_addr+1 : // after reading duration or

6 (state==FETCHPITCH) ? memory_addr+1 : // pitch, increment address

7 (state==GOTO) ? halfperiod : // special GOTO command

8 /* default: same */ memory_addr ; // otherwise stay unchanged

As a special case, if we hold down btn[1], the address is loaded from the sw[7:0] sliding
switches. On the START state, we start out at address zero. If we are in either the FETCHDURA
state or the FETCHPITCH state, we want to increment the address by one so that the next
read from the ROM will happen from the next memory loacation after this one. If we are
in the GOTO state, then the halfperiod value contains (instead of a musical note) the next
address from which we should continue reading.

Duration and halfperiod flip-flops
We store the duration and the half-period for the current note in a pair of 16-bit-wide

phys364/lab27.tex page 6 of 27 2014-12-08 12:49

flip-flops. The duration wires and the halfperiod wires connect the outputs of these flip-
flops, respectively. The duration flip-flop is only enabled in the FETCHDURA state; and the
halfperiod flip-flop is only enabled in the FETCHPITCH state. In both cases, the D (data)
inputs of the flip-flops are from the memory data outputs of the ROM. We’re just writing
down the value that we read from the ROM in either the FETCHDURA or the FETCHPITCH

state. The fact that memory_data (the ROM output) is connected to the D inputs of these
two flip-flops is a key point — if you don’t see why it is connected this way, please ask.

1 // Use a 16-bit D-type flip-flop to hold the desired duration (in ms)

2 // the note we are playing (or are about to play)

3 dffe_Nbit #(.N(16)) durationff

4 (.q(duration), // output goes to ’duration’ wires

5 .d(memory_data), // input data come from memory output data

6 .enable(state==FETCHDURA), // enabled only in the FETCHDURA state

7 .clock(clock), .reset(0));

8 assign zeroduration = (duration==0); // indicates special ’GOTO’ command

9

10 // Use a 16-bit D-type flip-flop to hold the half-period (in us)

11 // of the note we are playing (or are about to play)

12 dffe_Nbit #(.N(16)) halfperiodff

13 (.q(halfperiod), // output goes to ’halfperiod’ wires

14 .d(memory_data), // input data come from memory output data

15 .enable(state==FETCHPITCH), // enabled only in the FETCHPITCH state

16 .clock(clock), .reset(0));

17 assign zeroperiod = (halfperiod==0); // indicates rest (silence) vs. note

Counting microseconds and milliseconds.
Now we have two 16-bit counters. One of them increments once per microsecond. (This is
easy, because we set up our master clock to run at 1 MHz.)

The second counter increments once per millisecond. But we still clock it with the same
1 MHz clock. We use a once-per-millisecond pulse called pulse_1kHz to enable the mil-
lisecond counter. We do this because we want all of the logic in our state machine to be
synchronous to a single clock.

1 // Use a 16-bit counter to count off microseconds until the next

2 // time the wire driving the speaker needs to wiggle up or down

3 wire [15:0] count_usec;

4 wire reset_usec;

5 counter_Nbit #(.N(16)) myuseccounter

6 (.q(count_usec),

7 .clock(clock), // clocked by 1 MHz clock

8 .enable(1), // always enabled

9 .reset(reset_usec)); // reset to zero when starting new half-period

10 // We start a new half-period immediately after FETCHPITCH or once

11 // the number of microseconds exceeds the desired half-period

12 assign reset_usec = (state==FETCHPITCH || wigglenow);

13 assign wigglenow = (count_usec==halfperiod);

14

15 // Use a 16-bit counter to count off milliseconds until the end

16 // of the note that we are playing (or are about to play)

phys364/lab27.tex page 7 of 27 2014-12-08 12:49

17 wire [15:0] count_msec;

18 wire reset_msec = (state==FETCHPITCH || state==NOTEDONE);

19 counter_Nbit #(.N(16)) mymseccounter

20 (.q(count_msec), // elapsed millisecs (i.e. counter value)

21 .clock(clock), // counter operates from 1 MHz clock

22 .enable(pulse_1kHz), // enable only once per millisecond

23 .reset(reset_msec)); // reset when starting or ending a note

24 assign durationup = (count_msec==duration);

25 assign notegapdone = (count_msec==25); // 25 msec gap between notes

Other connections
Finally, notice that the left-hand pin on the JC connector is the wire that wiggles between
LOW and HIGH when the state machine goes back and forth between the WIGGLE0 and
WIGGLE1 states. You will want to connect this pin (the left-hand pin of JC) to one side of
a small speaker. Connect the other side of the speaker to the GND wire (the 2nd pin from
the right on the JC connector).

Once you compile and load the FPGA program, notice that the LEDs display in binary what
note we are currently playing (i.e. its half-period).

If you hold down btn[1], then the 7-segment LEDs display the 16 bits of memory_data, so
that you can see what is stored inside the ROM. Also, when you hold down btn[1], the 8
bits of memory_address are updated to contain whatever value is on the sliding switches.
These two features together allow you to inspect the ROM contents at a given address.

If you are not holding down btn[1] (normally you won’t be), then the digits do this:

• Digit 0 (on the right) indicates how much time is left until the current note is finished
playing.

• Digit 1 indicates what state the machine is in. It looks as if it is displaying “9” all
the time, but really it is just going back and forth between “4” and “5” (WIGGLE0 and
WIGGLE1).

• Digits 3 and 2 display the 8-bit memory_address from which the machine is currently
playing.

1 // Connect useful values to the inputs of ’myd4d1’ (displaydigits module)

2 wire [15:0] timeleft = duration-count_msec;

3 assign digit0 = btn[1] ? memory_data[3:0] : timeleft[14:7];

4 assign digit1 = btn[1] ? memory_data[7:4] : state;

5 assign digit2 = btn[1] ? memory_data[11:8] : memory_addr[3:0];

6 assign digit3 = btn[1] ? memory_data[15:12] : memory_addr[7:4];

7 assign dots[2:0] = btn[3:0];

8 assign led = halfperiod[7:0];

9

10 // Use 4 JC pins and 4 JD pins as outputs to drive LEDs, etc.

11 assign jc[1] = (state==WIGGLE1);

phys364/lab27.tex page 8 of 27 2014-12-08 12:49

12 assign jc[4:2] = 0;

13 assign jd[4:1] = {clock,pulse_1kHz,count_msec[0],count_msec[15]};

Spend some time checking out the features described above, looking through the ROM
contents by moving the switches, and annoying your neighbors with my horrible rendition
of Mary Had a Little Lamb. Go through the first several lines of the ROM contents and see
how I managed to code in E, D, C, D, E, E, E. D, D, D. E, G, G, and so on.

Other tunes: the pips
If you slide the switches to contain the decimal value 64 (binary 01000000) and momentarily
hold down btn[1], then you will hear over and over again, every ten seconds, the pips1 that
are played e.g. by the BBC World Service on the hour. See if you can understand how this
is coded into the ROM:

1 A== 64 ? 1000 : A== 65 ? 0 : // BBC news GMT "pips"

2 A== 66 ? 100 : A== 67 ? 500 : // 1 kHz for 100 ms at :59:55

3 A== 68 ? 900 : A== 69 ? 0 :

4 A== 70 ? 100 : A== 71 ? 500 : // 1 kHz for 100 ms at :59:56

5 A== 72 ? 900 : A== 73 ? 0 :

6 A== 74 ? 100 : A== 75 ? 500 : // 1 kHz for 100 ms at :59:57

7 A== 76 ? 900 : A== 77 ? 0 :

8 A== 78 ? 100 : A== 79 ? 500 : // 1 kHz for 100 ms at :59:58

9 A== 80 ? 900 : A== 81 ? 0 :

10 A== 82 ? 100 : A== 83 ? 500 : // 1 kHz for 100 ms at :59:59

11 A== 84 ? 900 : A== 85 ? 0 :

12 A== 86 ? 500 : A== 87 ? 500 : // 1 kHz for 500 ms at :00:00

13 A== 88 ? 4500 : A== 89 ? 0 :

14 A== 90 ? 0 : A== 91 ? 64 : // goto address 64

Do you see now why we need a GOTO instruction so that after reading from addresses 90 and
91 the machine can be told to loop back to address 64?

Other tunes: invention 13
Here (in the figure below) is a much more interesting tune. I actually transcribed the whole
thing a few years ago (and made a couple of mistakes), but there was a limit to what would
fit into the BASYS2 board’s available RAM.

It starts at ROM address 96 (decimal), or 01100000 (binary). If you key this into the sw[7:0]
and hold down btn[1] for a moment, it should start to play.

By the way, if you get tired of the music at some point, you can slide sw[0] up and your
machine should sit quietly in the START state.

1 A== 96 ? 125 : A== 97 ? 0 : // start of RHS of invention 13

2 A== 98 ? 125 : A== 99 ? 1516 :

3 A==100 ? 125 : A==101 ? 1136 :

4 A==102 ? 125 : A==103 ? 955 :

1http://en.wikipedia.org/wiki/Greenwich_Time_Signal

phys364/lab27.tex page 9 of 27 2014-12-08 12:49

http://en.wikipedia.org/wiki/Greenwich_Time_Signal

5 A==104 ? 125 : A==105 ? 1012 :

6 A==106 ? 125 : A==107 ? 1516 :

7 A==108 ? 125 : A==109 ? 1012 :

Part 2
I hope that by now you get the idea that a state machine is what allows a digital logic
circuit to step through the kind of sequence of operations that you might normally expect a
computer to carry out. The state machine from Part 1 was much more complicated than the
vending-machine or traffic-signal state machines from last week, though it does not really
have such a huge number of distinct states. The main thing that makes this machine capable
of doing something so complicated is that it is essentially reading a program from a memory
and carrying out the instructions given in that memory.

Here is the Verilog file for Part 2:
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part2.v

If you prefer to avoid compiling you own copy, you can use this pre-compiled .bit file:
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part2.bit

The main point of this part is to remind you that a Verilog program is not really a program
at all, but just a representation of a schematic diagram. I’ve taken the state machine from
Part 1 and encapsulated it into a module called playerpiano, which you can look through
in the Verilog source code, either in your web browser or in the ISE software.

1 // put the state machine logic from Part 1 into a module, so that we can

2 // instantiate TWO music machines to play at the same time!

3 module playerpiano

4 (output wigglewire, // output wire wiggles to play music

5 input clock, // 1 MHz clock

6 input reset, // reset button (start play from addr 0)

7 input gotobutton, // button to start playing from ’startaddr’

8 input stopthenoise, // switch to shut off the music

9 input pulse_1kHz, // pulse (1 us duration) once per ms

10 output [7:0] memaddr, // address at which to read from ROM

phys364/lab27.tex page 10 of 27 2014-12-08 12:49

http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part2.v
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part2.bit

11 input [15:0] memdata, // the data value returned by the ROM

12 input [7:0] startaddr); // addr to jump to if ’gotobutton’ is pressed

Then on the top level of the schematic diagram, I’ve instantiated two copies of playerpiano,
reading from two separate ROMs and sending their output music to two separate FPGA pins:
JC[1] (the left-hand pin on connector JC) and JD[1] (the left-hand pin on connector JD).

If you load the program and plug your speaker from JC[1] to GND, you will hear the same
tune as at the end of Part 1. If you move your speaker wire from JC[1] to JD[1], then you
will hear the corresponding left-hand part of Invention 13.

Notice that the two tunes are playing at the same time! The 7-segment display is showing
the left-hand memory address with digits 3,2 and the right-hand memory address with digits
1,0.

If you have time (if you reach this point by 3:30pm or so), then try the following:

Using one opamp and several resistors, wire up a circuit that allows you to combine the
audio signals from the two FPGA output pins and send the combined (summed) signal to
a single speaker. As an option, you might also contemplate a way to mix the two inputs
with a ratio other than 1:1. Maybe you want the right-hand tune to be twice as loud as the
left-hand tune, for instance. Please try very hard not to expose the FPGA output
pins to any voltage lower than 0 V or higher than +3.3 V, to avoid cooking the
FPGA.

Fallback option: If you want to try something quicker, just borrow a second speaker and
use linear superposition of sound waves to sum the two signals.

If you want to see this circuit playing through a big speaker (borrowed from Bill Berner) via
a transistor push-pull buffer, here’s a video from Fall 2012:
https://www.youtube.com/watch?v=tHcDawYmWtE .

phys364/lab27.tex page 11 of 27 2014-12-08 12:49

https://www.youtube.com/watch?v=tHcDawYmWtE

Part 3
The main idea for this part is go to a step beyond the music machine, to see that the
microprocessor at the heart of your Arduino, iPhone, notebook computer, etc. is really just
a fancy state machine connected to a large memory.

There’s no Verilog programming for you to do here, but I’d like you to study and tinker with
this circuit enough that you can follow how it works. In Part 4 you will modify the FPGA’s
memory contents to alter the program’s behavior.

If you’re feeling ambitious, in Part 4 you can load the FPGA’s memory with an entire in-
struction sequence of your own design, but that’s probably only feasible if you’ve encountered
assembly-language programming somewhere in the past.

Feel free to modify my Verilog program to do something different, if you like. Don’t feel
obligated to follow the script. Ask us for help if you have an idea you want to try.

Here is the Verilog file for Part 3:
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part3.v

If you decide to compile this for yourself, then you will also need to download
http://positron.hep.upenn.edu/wja/p364/2014/files/asm.hex

and put it into the same ISE project directory that contains lab27_part3.v. Or you can
avoid compiling your own copy by using this pre-compiled .bit file:
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part3.bit

If you use ADEPT to load this lab27_part3.bit file into your BASYS2 board, you will see
your board display a sequence of prime numbers. (Make sure the sliding switches are all in
the DOWN positions.)

This state diagram for our simple computer should look familiar by now:

phys364/lab27.tex page 12 of 27 2014-12-08 12:49

http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part3.v
http://positron.hep.upenn.edu/wja/p364/2014/files/asm.hex
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part3.bit

Here is what this list of states (i.e. the association from word-like names to integer state
numbers) looks like in Verilog. I just added a JUMPNZ state (“jump if nonzero”), which hasn’t
yet made it into the state diagram or the reading.

1 // Enumerate the possible states of CPU’s state machine

2 localparam

3 RESET = 0, // initial state: reset goes here

4 FETCH = 1, // fetch next instruction from memory

5 DECODE = 2, // decode instruction: what are my orders?!

6 LOAD = 3, // execute LOAD: AC := memory[argument]

7 STORE = 4, // execute STORE: memory[argument] := AC

8 STORE2 = 5, // store gets an extra clock cycle for write to finish

9 JUMP = 6, // execute JUMP: PC := argument

10 JUMPZ = 7, // execute JUMPZ: if (AC==0) PC := argument

11 JUMPN = 8, // execute JUMPN: if (AC<0) PC := argument

12 JUMPNZ = 13, // execute JUMPNZ: if (AC!=0) PC := argument

13 ADD = 9, // execute ADD: AC := AC + memory[argument]

14 SUB = 10, // execute SUB: AC := AC - memory[argument]

15 MUL = 11, // execute MUL: AC := AC * memory[argument]

16 OUT = 12; // execute OUT: display AC on 7-segment LEDs

Since there are 14 states (more than 8 but fewer than 16), we use a 4-bit-wide D-type flip-flop
to hold the current value of the CPU state:

1 // Use a 4-bit D-type flip-flop to hold the state of the CPU’s FSM

2 dffe_Nbit #(.N(4)) state_ff (.q(state), .d(state_next),

3 .clock(clock), .enable(run), .reset(reset));

and here is the next-state logic to set up the transitions from state to state:

1 // Compute next state based on current state and pertinent conditions

2 assign state_next =

3 reset ? RESET : // reset line => RESET

4 state==FETCH ? DECODE : // FETCH => DECODE

5 state==DECODE ? (IR[15:8]==0 ? LOAD : // DECODE => execute decoded

6 IR[15:8]==1 ? STORE : // instruction (LOAD, STORE,

7 IR[15:8]==2 ? JUMP : // JUMP, etc.)

8 IR[15:8]==3 ? JUMPZ :

9 IR[15:8]==4 ? JUMPN :

10 IR[15:8]==9 ? JUMPNZ :

11 IR[15:8]==5 ? ADD :

12 IR[15:8]==6 ? SUB :

13 IR[15:8]==7 ? MUL :

14 IR[15:8]==8 ? OUT :

15 FETCH) : // unknown => FETCH

16 state==STORE ? STORE2 : // STORE => STORE2

17 /* default */ FETCH ; // default => FETCH

As the reading described, the CPU points its “Program Counter” (PC) at the next address in
memory, FETCHes the instruction from memory[PC], and then DECODEs it to figure out what
to do next. The upper 8 bits of the instruction contain the “opcode,” i.e. they determine
whether the instruction is a LOAD operation, a STORE operation, an ADD operation, etc. The

phys364/lab27.tex page 13 of 27 2014-12-08 12:49

lower 8 bits of the instruction are the “argument” for the operation, and generally refer to
a memory address.

Random Access Memory
This CPU uses a read/write memory, a.k.a. a RAM, both to store instructions that it will
execute and to store the intermediate results of its calculations. The module that defines
the RAM begins like this:

1 // 256x16 RAM, i.e. 256 storage locations, each of which is 16 bits wide

2 module ram256x16 (

3 input clock, // clock (pertinent for writes only)

4 input writeenable, // write-enable

5 input [7:0] address, // address at which to read/write

6 input [15:0] datain, // data to store next clock (if write-enabled)

7 output [15:0] dataout // current memory contents at address A

8);

The other details of this ram256x16 module are not worth studying, except to note that
the initial (“power-up”) contents of the memory, when the FPGA is first configured by the
ADEPT software, are read from a file called asm.hex.2 (This file is read when the FPGA
program is compiled to produce the .bit file, not when the FPGA is loaded.) Here’s the
rest of the ram256x16 module:

1 reg [15:0] memory [255:0];

2 always @ (posedge clock) begin

3 if (writeenable) memory[address] <= datain;

4 end

5 assign dataout = memory[address];

6 // power-up memory contents come from text file ’asm.hex’

7 initial $readmemh("asm.hex", memory);

8 endmodule

We connect the 8-bit memory_addr lines, the 16-bit memory_datain lines, the single memory_write
line (which is HIGH only when we want to update the value stored in the memory at the
current address), and the 16-bit memory_dataout lines. The first three of these are outputs
of the CPU state machine (they are inputs to the memory), so they are connected like this:

1 // This CPU uses a RAM consisting of 256 16-bit words. In the

2 // FETCH state, the memory address is the Program Counter, so that

3 // we can fetch the next instruction. Otherwise, the memory

4 // address is the "argument" of the decoded instruction, i.e. the

5 // low 8 bits of the IR.

6 assign memory_addr = (state==FETCH) ? PC : IR[7:0];

7

8 // The memory is only written in the STORE state; the data written

9 // to the memory always come from the accumulator (AC).

10 assign memory_write = (state==STORE);

11 assign memory_datain = AC;

2http://positron.hep.upenn.edu/wja/p364/2014/files/asm.hex

phys364/lab27.tex page 14 of 27 2014-12-08 12:49

http://positron.hep.upenn.edu/wja/p364/2014/files/asm.hex

The memory_dataout lines are an input to the CPU (they are an output of the memory).
The logic for memory_addr is worth thinking about for a moment. If the CPU is FETCHing
the next instruction to be run, then the relevant memory address is contained in the Program
Counter (PC). Otherwise, the relevant memory address is contained in the low 8 bits of the
Instruction Register IR[7:0], because each instruction consists of an opcode (upper 8 bits)
and an address (lower 8 bits). The opcode is “what operation to perform,” and the address
indicates “what data to operate on” (in addition to the accumulator).

Accumulator
The accumulator is the register that does nearly all of the CPU’s work. It is stored in
a 16-bit-wide D-type flip-flop. Here is the Verilog code that instantiates the flip-flop and
connects it:

1 // Accumulator (AC) is this CPU’s primary register; all math

2 // instructions operate on the accumulator.

3 //

4 // Acccumulator next-value logic:

5 // ADD => AC := AC + memory

6 // SUB => AC := AC - memory

7 // MUL => AC := AC * memory

8 // LOAD => AC := memory

9 // RESET => AC := 0

10 //

11 // Note that the multiply happens in a single clock cycle, so it

12 // will compile to an entirely combinational multiplier -- the

13 // one you would write down using an adder and a multiplexer for

14 // each bit of the multiplicand.

15 wire [15:0] product =

16 (AC*memory_dataout > ’hffff) ? ’hffff : AC*memory_dataout;

17 dffe_Nbit #(.N(16)) AC_ff (.q(AC), .d(AC_next), .clock(clock),

18 .enable(AC_enable), .reset(reset));

19 assign AC_next = (state==ADD) ? AC + memory_dataout :

20 (state==SUB) ? AC - memory_dataout :

21 (state==MUL) ? product :

22 (state==LOAD) ? memory_dataout : 0;

23 assign AC_enable = run &&

24 (state==ADD ||

25 state==SUB ||

26 state==MUL ||

27 state==LOAD ||

28 state==RESET);

It is actually really neat (I think) to see how the contents of the accumulator are trans-
formed when the CPU is in the various states like LOAD, ADD, SUB, MUL. The expression
AC + memory_dataout represents a 16-bit-wide adder, whose two inputs are the present
contents of the accumulator and the present contents of memory_dataout. The present con-
tents of memory_dataout are whatever happens to be stored at the memory address referred
to by memory_addr on the previous page. As described above, memory_addr is normally
the low 8 bits of the Instruction Register, i.e. the “operand” or “argument” of whatever
instruction is currently being carried out by the CPU. If the current state is ADD, then on

phys364/lab27.tex page 15 of 27 2014-12-08 12:49

the next clock cycle, the contents of the accumulator will be replaced by the output of the
adder. The net result of this will be AC ← AC + memory[IR[7:0]], i.e. whatever is stored
in the memory address pointed to by the low 8 bits of the Instruction Register will be added
to the accumulator. If you don’t fully understand this, then now is the time to stop one of
us and demand a better explanation!

Similarly, the expression AC - memory_dataout represents a 16-bit subtraction. To sub-
tract two numbers, you take the first number and add to it the negative of the second number.
To compute the negative of a number, in two’s complement representation, you first invert
all of the bits (all 1’s become 0’s and vice-versa) and then add 1 to the result. So the logic
that Verilog needs to generate for subtraction is similar to that for addition.

Accumulator’s multiplication logic Multiplication of two binary numbers is less com-
plicated than you might think. Suppose you want to compute 9 × 5 = 45, which in binary
would be 10012 × 1012 = 1011012. You can do this using the binary version of the “long
multiplication” technique that you learned (in decimal!) as a kid:

1001

x 0101

1001

0000

1001

+ 0000

0101101

So multiplying together two 16-bit numbers requires 16 multiplexers (the thing to be added
in each row is either zero or a shifted copy of the first multiplicand) and 15 adders. In general,
the result of multiplying two 16-bit integers together is a 32-bit integer, so in general the
answer won’t fit back into the accumulator. A real computer needs a mechanism to detect
overflow conditions in a way that the programmer can handle correctly. To keep things
simple, my product logic uses this crude workaround: if the product is too big to fit into 16
bits, then I simply report 65535 (the largest 16-bit number) as the answer. That kludge is
implemented by multiplexing the output of the multiplier with FFFF16:

1 wire [15:0] product =

2 (AC*memory_dataout > ’hffff) ? ’hffff : AC*memory_dataout;

Output register
The output register is how this little CPU communicates its results to the outside world.
When the OUT instruction is executed, the current contents of the accumulator are copied to
the OUT register, whose contents are always displayed on the 4-digit 7-segment LED display.

phys364/lab27.tex page 16 of 27 2014-12-08 12:49

On a real computer, a mechanism similar to this would be used to interface the computer
to a digital-to-analog converter, or to external devices like printers, network interfaces, disk
drives, etc. A real computer would also have an opcode like IN to receive input from external
devices like keyboards, mice, analog-to-digital converters, disk drives, etc. Anyway, here is
the Verilog code for the output register:

1 // The output register is this CPU’s way to report its results to

2 // the outside world. The only path to the ’out’ register is from

3 // the accumulator. The ’out’ register is only enabled while the

4 // OUT instruction is executing.

5 dffe_Nbit #(.N(16)) out_ff (.q(out), .d(AC), .clock(clock),

6 .enable(out_enable), .reset(reset));

7 assign out_enable = (state==OUT) && run;

Instruction Register
The Instruction Register (IR) holds the 16-bit instruction that is currently being executed,
as described in the textbook chapter. Here is the Verilog code for the IR. Notice that the
IR is a flip-flop that is only enabled during the FETCH state. Fetching the next instruction
from the memory into the IR is analogous to the music machine’s fetching the next duration
and halfperiod from the memory into the corresponding registers (a.k.a. flip-flops). We need
the IR to hold a copy of the instruction we are currently executing, because the process of
carrying out the current instruction will in general require us to read or write other memory
locations.

1 // The Instruction Register (IR) holds the instruction that is

2 // currently being executed. The only path into the IR is from

3 // the memory; the IR is only enabled in the FETCH state, i.e.

4 // while fetching the next instruction from memory.

5 dffe_Nbit #(.N(16)) IR_ff (.q(IR), .d(memory_dataout), .clock(clock),

6 .enable(IR_enable), .reset(reset));

7 assign IR_enable = (state==FETCH) && run;

Program Counter
The Program Counter (PC) holds the memory address from which the next instruction
will be read, the next time the CPU enters the FETCH state. Normally the Program Counter
just increases by one on each subsequent instruction, corresponding to running a program
that has no GOTOs, no loops, etc. But the JUMP, JUMPZ, JUMPN, and JUMPNZ opcodes can
overwrite the contents of the Program Counter, thus changing the flow of the program.

If you have ever traced through the sequence of operations carried out by a computer pro-
gram, either by running your pencil down a program listing line-by-line as your mind mimics
the computer’s actions, or by using a “symbolic debugger” go watch your program run line-
by-line, then Program Counter corresponds to “what line of the program is running now.”
Since each instruction of an assembly-language program is stored at its own memory address,
the Program Counter holds the address in memory corresponding to the line of the program
that is currently running. (More precisely, the PC actually holds the address of the next line
of the program to run, since the PC is incremented at the end of the FETCH state.)

phys364/lab27.tex page 17 of 27 2014-12-08 12:49

The conditional jump instructions are the most interesting ones, as they are what permit
the computer to make decisions: it can e.g. (JUMPZ instruction) go to a different address if the
accumulator currently equals zero, or else continue along its current path if the accumulator
contents are non-zero. Similarly, we can check whether the accumulator is negative (i.e. the
highest bit is set), and jump or not jump accordingly. Important point: Without these
conditional jump instructions, you couldn’t write programs that use IF or WHILE or FOR
to make decisions or to loop until some condition occurs.

Here is the Verilog code for the Program Counter:

1 // The Program Counter (PC) holds the address from which the next

2 // instruction will be fetched. Here is the program counter

3 // update logic:

4 // RESET => PC := 0

5 // FETCH => PC := PC+1 (after fetching from PC, point to PC+1)

6 // JUMP => PC := low byte of IR

7 // JUMPZ => PC := low byte of IR if AC == 0, else unchanged

8 // JUMPN => PC := low byte of IR if AC < 0, else unchanged

9 // JUMPNZ => PC := low byte of IR if AC != 0, else unchanged

10 dffe_Nbit #(.N(8)) PC_ff (.q(PC), .d(PC_next), .clock(clock),

11 .enable(PC_enable && run), .reset(reset));

12 assign PC_next = (state==RESET) ? 0 :

13 (state==FETCH) ? PC+1 : IR[7:0] ;

14 assign PC_enable = run &&

15 ((state==RESET) ||

16 (state==FETCH) ||

17 (state==JUMP) ||

18 (state==JUMPZ && AC==0) ||

19 (state==JUMPNZ && AC!=0) ||

20 (state==JUMPN && AC[15]));

Top-level connections
That’s basically all it takes to make a simplified computer. You can see that it’s just a state
machine connected to a memory, not so different from the music machine we studied earlier
today. To make it easy for you to see all of the computer’s inputs and outputs, I put the guts
of the computer (a.k.a. CPU, Central Processing Unit) into a module called simple_cpu.
Here are the connections needed from the top-level module:

1 // These wires connect to the inputs/outputs of the CPU module

2 wire [15:0] memory_dataout, memory_datain, IR, AC, out;

3 wire [7:0] PC, memory_addr;

4 wire [3:0] state;

5 wire memory_write;

6

7 // Determine when the CPU will run (do its normal thing) and when

8 // it will pause to wait for the user.

9 wire run = !sw[0];

10

11 // Button 1 will reset the CPU to its initial state.

12 // function

13 wire reset = btn[1];

phys364/lab27.tex page 18 of 27 2014-12-08 12:49

14

15 // Instantiate the CPU and its memory

16 simple_cpu cpu (.clock(clock), .reset(reset), .run(run),

17 .PC(PC), .AC(AC), .IR(IR), .state(state),

18 .memory_dataout(memory_dataout), .memory_addr(memory_addr),

19 .memory_datain(memory_datain), .memory_write(memory_write),

20 .out(out));

21 ram256x16 ram (.clock(clock),

22 .writeenable(memory_write),

23 .address(memory_addr),

24 .datain(memory_datain),

25 .dataout(memory_dataout));

26

27 // The green LEDs will display the Program Counter

28 assign led = PC;

29

30 // The 7-segment display will show the OUT register, i.e. the most

31 // recent prime number.

32 wire [15:0] leddat = out;

33

34 assign {digit3,digit2,digit1,digit0} = leddat;

If you look at the complete Verilog program at this URL:
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part3.v

you will see that there is really not that much to it.

Now what can this computer do?
To prove to you that this computer is capable of doing a real computation, I coded the
stupidest imaginable algorithm for calculating all of the prime numbers from 2 to 9973.
Here is how the algorithm would look if I were to write it in the C programming language.

1 #include <stdio.h>

2

3 int main(void)

4 {

5 int i, j, k, product;

6 // loop ’i’ over candidate prime numbers, from 2 to 9999

7 for (i = 2; i<10000; i = i+1) {

8 // loop ’j’ over possible first factors, from 2 to i-1

9 for (j = 2; j<i; j = j+1) {

10 // loop ’k’ over possible second factors, from j to i-1

11 for (k = j; k<i; k = k+1) {

12 product = j*k;

13 // if j*k equals i, then i must not be prime: jump to ’iloop’

14 if (product==i) goto iloop;

15 // if j*k > i, then skip the rest of the k loop

16 if (product>i) break;

17 }

18 }

19 // if we reach this point, then i is prime: print it out

20 printf("%d\n", i);

21 iloop:; // this label ’iloop’ allows the ’goto’ to jump here

phys364/lab27.tex page 19 of 27 2014-12-08 12:49

http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part3.v

22 }

23 return 0;

24 }

On my Mac, the program outputs 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . ., 9887, 9901, 9907,
9923, 9929, 9931, 9941, 9949, 9967, 9973. Since we have no C compiler for our home-made
computer, we have to write our program directly in the computer’s assembly language,
i.e. using the opcodes LOAD, STORE, ADD, JUMP, etc.

1

2 #

3 # prime.sasm

4 # coded 2010-11-11 by Bill Ashmanskas, ashmansk@hep.upenn.edu

5 #

6 # The purpose of this program is to demonstrate that the CPU

7 # implemented in simple_cpu.v is capable of carrying out a

8 # non-trivial computation.

9 #

10 # This is probably the dumbest imaginable algorithm to compute

11 # prime numbers. Its execution time scales as the third power

12 # of the number of candidates to evaluate. For every candidate i,

13 # loop over possible factors j and k, testing whether i==j*k. If

14 # no such j and k are found, then display i on the LEDs.

15 #

16 # Note that with storage for a mere 5000 boolean values (which

17 # I could have easily cooked up), one can use a much more efficient

18 # algorithm, the Sieve of Eratosthenes. It scales (with number of

19 # candidate integers N) as N*log(N)*log(log(N)), while my algorithm

20 # scales as N**3. I point this out only so that you don’t think

21 # that I think the N**3 algorithm is a good way to compute primes.

22 #

23 start: load istart #

24 store i # i := istart (nominally 1)

25 iloop: load i # loop i from istart+1 to 9999

26 add one #

27 store i # i := i+1

28 load d9999 #

29 sub i #

30 jumpn done # if (i>9999) goto done

31 load one #

32 store j # j := 1

33 jloop: load j # loop j from 2 to i-1

34 add one #

35 store j # j := j+1

36 load i #

37 sub j #

38 jumpz jdone # if (j==i) goto jdone

39 load j #

40 sub one #

41 store k # k := j-1

42 kloop: load k # loop k from j to i-1

43 add one #

44 store k # k := k+1

phys364/lab27.tex page 20 of 27 2014-12-08 12:49

45 sub i #

46 jumpz jloop # if (k==i) goto jloop

47 load j #

48 mul k #

49 store prod # product := j*k

50 sub i # // if j*k==i then i is not prime

51 jumpz iloop # if (product==i) goto iloop // skip to next i

52 jumpn kloop # if (product<i) goto kloop // keep looping k

53 # // k exceeds i/j, so skip to next j

54 jump jloop # goto jloop

55 #

56 # If we reach here, then i is a prime number. Display it.

57 #

58 jdone:

59 ... (uninteresting stuff suppressed) ...

60 jump iloop # go back up to try next candidate i

61 done: jump start # go back and start counting again from i==2

62 #

63 # This is where we define all of the constants and variables that

64 # our program will use when it runs.

65 #

66 zero: .data 0 # store the constant ’0’

67 one: .data 1 # store the constant ’1’

68 i: .data 0 # store the loop variable ’i’ (prime number cand.)

69 j: .data 0 # store the loop variable ’j’

70 k: .data 0 # store the loop variable ’k’

71 prod: .data 0 # store the product ’prod’ = j*k

72 outnum: .data 0 # compute/store binary-coded-decimal conversion of i

73 remain: .data 0 # store remainder used in BCD computation

74 hdigit: .data 0 # store hex value used to display one decimal digit

75 h1000: .data 1000 # store hexadecimal constant 0x1000

76 h100: .data 100 # store hexadecimal constant 0x100

77 h10: .data 10 # store hexadecimal constant 0x10

78 d10000: .data 2710 # store decimal constant 10000

79 d1000: .data 3e8 # store decimal constant 1000

80 d100: .data 64 # store decimal constant 100

81 d10: .data a # store decimal constant 10

82 d9999: .data 270f # store decimal constant 9999 (= 270f in hexadecimal)

83 istart: .data 1 # starting value for i (i.e. first prime to check)

84 Jdelay: .data 1000 # delay factor (in hexadecimal)

85 Kdelay: .data 300 # additional delay factor (in hexadecimal)

The part of the code that is shown above does the prime number calculation. The whole
program, including the parts that I omitted above, is at
http://positron.hep.upenn.edu/wja/p364/2014/files/prime.sasm

There are two parts that I didn’t show:

First, the conversion of the prime number from a 16-bit hexadecimal integer into four decimal
digits (thousands, hundreds, tens, ones), so that the primeness of the prime numbers looks
more convincing to a human observer.

phys364/lab27.tex page 21 of 27 2014-12-08 12:49

http://positron.hep.upenn.edu/wja/p364/2014/files/prime.sasm

Second, the brief delay before displaying each new prime number, so that the numbers do
not overwrite each other too quickly for you to see. The delay is implemented as a “nested
loop:” the outer loop repeats 100016 = 4096 times, and the inner loop repeats 30016 = 768
times for each repetition of the outer loop. So it’s just wasting time by counting up to about
3 million. The nested loop is needed because our tiny computer’s integers are only 16 bits
wide.

Machine-readable format
The program above is still in human-readable form. We need to convert the instructions into
hexadecimal memory contents. Here is the output of that process, i.e. an annotated file that
is identical in content to asm.hex.3 The annotated version is at prime_assembled.txt.4

The file looks like this (with boring parts suppressed):

1 mem[’h00] = ’h006e; // start: load istart

2 mem[’h01] = ’h015f; // store i

3 mem[’h02] = ’h005f; // iloop: load i

4 mem[’h03] = ’h055e; // add one

5 mem[’h04] = ’h015f; // store i

6 mem[’h05] = ’h006d; // load d9999

7 mem[’h06] = ’h065f; // sub i

8 mem[’h07] = ’h045c; // jumpn done

9 mem[’h08] = ’h005e; // load one

10 mem[’h09] = ’h0160; // store j

11 mem[’h0a] = ’h0060; // jloop: load j

12 mem[’h0b] = ’h055e; // add one

13 mem[’h0c] = ’h0160; // store j

14 mem[’h0d] = ’h005f; // load i

15 mem[’h0e] = ’h0660; // sub j

16 mem[’h0f] = ’h031f; // jumpz jdone

17 mem[’h10] = ’h0060; // load j

18 mem[’h11] = ’h065e; // sub one

19 mem[’h12] = ’h0161; // store k

20 mem[’h13] = ’h0061; // kloop: load k

21 mem[’h14] = ’h055e; // add one

22 mem[’h15] = ’h0161; // store k

23 mem[’h16] = ’h065f; // sub i

24 mem[’h17] = ’h030a; // jumpz jloop

25 mem[’h18] = ’h0060; // load j

26 mem[’h19] = ’h0761; // mul k

27 mem[’h1a] = ’h0162; // store prod

28 mem[’h1b] = ’h065f; // sub i

29 mem[’h1c] = ’h0302; // jumpz iloop

30 mem[’h1d] = ’h0413; // jumpn kloop

31 mem[’h1e] = ’h020a; // jump jloop

32 mem[’h1f] = ’h005d; // jdone: load zero

33 ...

34 mem[’h5c] = ’h0200; // done: jump start

35 mem[’h5d] = ’h0000; // zero: .data 0

36 mem[’h5e] = ’h0001; // one: .data 1

3http://positron.hep.upenn.edu/wja/p364/2014/files/asm.hex
4http://positron.hep.upenn.edu/wja/p364/2014/files/prime_assembled.txt

phys364/lab27.tex page 22 of 27 2014-12-08 12:49

http://positron.hep.upenn.edu/wja/p364/2014/files/asm.hex
http://positron.hep.upenn.edu/wja/p364/2014/files/prime_assembled.txt

37 mem[’h5f] = ’h0000; // i: .data 0

38 mem[’h60] = ’h0000; // j: .data 0

39 mem[’h61] = ’h0000; // k: .data 0

40 mem[’h62] = ’h0000; // prod: .data 0

41 mem[’h63] = ’h0000; // outnum: .data 0

42 mem[’h64] = ’h0000; // remain: .data 0

43 mem[’h65] = ’h0000; // hdigit: .data 0

44 mem[’h66] = ’h1000; // h1000: .data 1000

45 mem[’h67] = ’h0100; // h100: .data 100

46 mem[’h68] = ’h0010; // h10: .data 10

47 mem[’h69] = ’h2710; // d10000: .data 2710

48 mem[’h6a] = ’h03e8; // d1000: .data 3e8

49 mem[’h6b] = ’h0064; // d100: .data 64

50 mem[’h6c] = ’h000a; // d10: .data a

51 mem[’h6d] = ’h270f; // d9999: .data 270f

52 mem[’h6e] = ’h0001; // istart: .data 1

53 mem[’h6f] = ’h1000; // Jdelay: .data 1000

54 mem[’h70] = ’h0300; // Kdelay: .data 300

So the memory contents that cause the computer to calculate this big sequence of prime
numbers look like this: 006e 015f 005f 055e 015f 006d 065f 045c 005e 0160 0060 055e 0160
005f 0660 031f 0060 065e 0161 0061 055e 0161 065f 030a 0060 0761 0162 065f 0302 0413
020a 005d 0163 005f 0164 0669 0426 025c 005d 0165 0064 066a 0430 0164 0065 0566 0165
0228 0065 0563 0163 005d 0165 0064 066b 043d 0164 0065 0567 0165 0235 0065 0563 0163
005d 0165 0064 066c 044a 0164 0065 0568 0165 0242 0065 0563 0564 0163 0800 006f 0160
0070 0161 0061 065e 0161 0953 0060 065e 0160 0951 0202 0200 0000 0001 0000 0000 0000
0000 0000 0000 0000 1000 0100 0010 2710 03e8 0064 000a 270f 0001 1000 0300 0000 0000
. . . (more zeros). There’s not much to it! To convert the first (“assembly”) format into the
second (“machine”) format, I wrote this Python program:
http://positron.hep.upenn.edu/wja/p364/2014/files/sasm.py.txt

which is called an assembler, because it converts human-readable assembly language into
hexadecimal (or binary) machine code.

You can run the assembler yourself from your web browser, at this link:
http://positron.hep.upenn.edu/wja/p364/2014/files/assembler.html

Again, for Part 3, all you really need to do is to load this pre-compiled .bit file:
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part3.bit

into your BASYS2 board with ADEPT and to see your board display a sequence of prime
numbers. (Make sure the sliding switches are all in the DOWN positions.)

phys364/lab27.tex page 23 of 27 2014-12-08 12:49

http://positron.hep.upenn.edu/wja/p364/2014/files/sasm.py.txt
http://positron.hep.upenn.edu/wja/p364/2014/files/assembler.html
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part3.bit

Part 4
For this final part, the idea is for you to watch the tiny computer step through some of its
operations in detail. You can also write your own programs in the tiny computer’s assembly
language, if you like. To make the operation of the computer less opaque, I’ve coded in some
features for watching and changing what the computer is doing. To get all of these debug
features, you’ll want to load
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part4.bit

into your BASYS2 board. The Verilog source code is at
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part4.v

And if you want to make changes, you will probably find it easiest to start from this complete
Xilinx ISE project in .zip form:
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part4.zip

Reset button. If you push down btn[1], you will reset the CPU to its initial state, and it
will restart whatever program it was running. (If it’s the prime-number program, you’ll see
it restart counting out prime numbers from 0002.)

Pause switch. If you slide sw[0] up, you will pause the CPU’s activity.

Program Counter display. The 8 green LEDs display the current value of the Program
Counter.

New functions for 7-segment LEDs:

• If you slide sw[7] up, then the left two digits will display the Program Counter, and
the right two digits will display the memory_addr, i.e. the address that is currently
sent into the RAM.

• If you slide sw[6] up (but not sw[7]), then the four digits will display the Instruction
Register.

• If you slide sw[5] up (but not sw[7:6]), then the four digits will display memory_dataout,
i.e. the data that are currently read out of the RAM.

• If you slide sw[4] up (but not sw[7:5]), then the four digits will display the Accumu-
lator contents.

• If you slide sw[3] up (but not sw[7:4]), then the right-hand digit will display the
state number of the CPU’s finite-state machine, i.e. 0=RESET, 1=FETCH, 2=DECODE,
etc.

• If you press btn[3], it will rotate between four modes of operation for the CPU.

– The decimal-point dots will display ---*, --*-, -*--, *--- respectively for modes
0,1,2,3.

– In mode 0, the CPU runs freely as it did in Part 3. You can use sw[0] to pause
the CPU and btn[1] to reset it.

phys364/lab27.tex page 24 of 27 2014-12-08 12:49

http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part4.bit
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part4.v
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part4.zip

– In mode 1, the CPU will pause at each OUT instruction until you press btn[0]

to continue. This results in each prime number being displayed until you push
btn[0]. While the CPU is stopped, you can use sw[7] through sw[3] to explore
the contents of 7=(PC,memaddr), 6=IR, 5=memdataout, 4=AC, 3=state.

– In mode 2, the CPU will pause at each DECODE state until you press btn[0]. You
can single-step through individual instructions and examine the CPU’s registers
using sw[7] through sw[3] as above.

– Also in mode 2, if sw[0] is up, then the CPU will pause on every clock cycle, no
matter what state it is in. You can watch the CPU’s finite state machine go from
FETCH to DECODE to (LOAD, STORE, ADD, etc.).

– In mode 0, 1, or 2, pressing btn[2] will copy the current 8-bit value represented
by the sliding switches into a register called useraddr. When you are in mode 1
(not mode 2, this is mode 1 again), if the Program Counter equals the 8-bit value
in useraddr, then the CPU will pause until you press btn[0]. This allows you
to explore what the CPU is doing at a particular section of the program code. (If
you are a programmer, it is like setting a breakpoint in the debugger.)

– So you can use the useraddr feature in mode 1 to make the program stop next
time it reaches e.g. the instruction at address 18 (hexadecimal), then switch to
mode 2 to single-step through the subsequent instructions.

– In mode 3, the CPU does nothing, and you can read/write the memory.

∗ If all of the sliding switches are down, then btn[0] will step forward through
the memory one address at a time.
∗ In memory mode (mode 3), the 8 green LEDs show the address, and the

digits show the memory data stored at that address.
∗ While you are are holding down btn[0], the digits will momentarily show

the address also.
∗ If the switches are all in the down (zero) position, then pressing btn[0] will

add 1 to the address. This makes it easy for you to step sequentially through
the entire memory to check its contents.
∗ If the switches are set to a non-zero position, then pressing btn[0] will use the

switches as the address into the memory. This address is remembered once
the button is released, so you can then move the switches without changing
the address.
∗ If you push btn[1], the 8-bit value from the switches will replace the lower

8 bits of the memory contents at the current memory address.
∗ If you push btn[2], the 8-bit value from the switches will replace the upper

8 bits of the memory contents at the current memory address.
∗ The “current memory address” in memory mode (mode 3) is stored in the

same userdata register mentioned above.
∗ This allows you to look through the memory contents, compare them with

the assembler output, and even modify the program (or more likely the .data
words).

If you want to write your own program, you will probably find it convenient to run it in

phys364/lab27.tex page 25 of 27 2014-12-08 12:49

mode 1 so that you can display a sequence of values on the 7-segment LED displays using
the OUT instruction, then push btn[0] to let the program run until the next OUT instruction.

A few annoying sources of potential confusion:

• I recently modified lab27_part3.v so that the CPU is clocked at 50 MHz, but I did
not have time to make the same modification to lab27_part4.v (because making that
modification would break other features in lab27_part4.v). So the Kdelay constant
at the bottom of prime.sasm needs to be much smaller (e.g. Kdelay: .data 10) for
lab27_part4.v than in lab27_part3.v (where the value is 300). So if you use the
asm.hex from Part 3 and compile it into the Part 4 Verilog program, the delay between
prime numbers will be nearly one minute, unless you reduce this Kdelay value.

• The file asm.hex must contain exactly 256 hexadecimal values, one value per line. The
Xilinx compiler is not very smart (or very forgiving) about the .hex file format. If
your file is the wrong length, the compiler will not even warn you; it will just initialize
the memory contents with all zeros.

• If you change the asm.hex file and want to generate a new lab27_part4.bit file to
reflect this change, you need to right-click “Generate Programming File” and then
choose “ReRun All.” The Xilinx compiler isn’t smart enough to know what steps
need to be re-run when the asm.hex file is changed, as it does not consider it to be a
source-code file.

• For these last two reasons, I think that in the future I will avoid using the .hex memory
file. I only recently learned just how limited the Xilinx $readmemh support is. Sorry!

Your Challenge (if you have the time and energy):
Here is a very short program that just counts up, starting from 1, and OUTputs each number
to the 7-segment display. About half of the program is there just to delay about a second
after displaying each number. You can leave those lines out if you prefer to use the “mode 1”
feature described above.

1 start: load zero # we’ll do a loop over i

2 store i # i:= 0

3 iloop: load i

4 add one

5 store i # i := i+1

6 out # send accumulator to the 7-segment display

7

8 # these next six lines are just here to pause after showing each number

9 load Kdelay # loop k from Kdelay downto 1

10 store k # k := Kdelay

11 kdelay: load k # loop k from Kdelay downto 1

12 sub one #

13 store k # k := k-1

14 jumpnz kdelay # if (k!=0) keep looping over k

15

16 jump iloop # go back up to loop over the next value of i

phys364/lab27.tex page 26 of 27 2014-12-08 12:49

17

18 zero: .data 0 # store the constant ’0’

19 one: .data 1 # store the constant ’1’

20 i: .data 0 # store the loop variable ’i’

21 j: .data 0 # store the loop variable ’j’

22 k: .data 0 # store the loop variable ’k’

23 Kdelay: .data f000 # delay factor (in hexadecimal)

Copy this source code (there is an easier-to-copy version at
http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part4_asm.txt

) into the Assembler Code window at
http://positron.hep.upenn.edu/wja/p364/2014/files/assembler.html

and then click Assemble it. Then copy and paste the 256 lines of “.hex format” values to
replace the current contents of asm.hex, which you can edit using the Xilinx ISE source code
editor. Then do “Generate Programming File” → “ReRun All” (you must select “ReRun
All” to make Xilinx ISE use the updated asm.hex contents) and load the resulting .bit file
into your board. You should see the board counting (in hexadecimal).

Now modify the assembler source code in some way that interests you. You could
make the counter count up in steps of 3 instead of steps of 1. Or you could display the
square of each integer (in hexadecimal) instead of the integer itself. Or you could take one
more stab at displaying the Fibonacci sequence! The idea is just to give yourself a chance
to write a very short assembly-language program and to load it into the tiny computer that
we programmed into the BASYS2 board. Ask us for help if you have an idea that you’re not
sure how to implement.

If you plan to spend more than a few minutes editing the assembler source code, then you
should take precautions to avoid losing your work. Use some sort of text editor (e.g. the
ISE source code editor, or even NotePad) to make your changes, and then copy/paste them
into the web browswer window. (The web browser window is not smart enough to save your
file anywhere. Your text is only there until you close or reload the web page.)

If you make only a tiny change to the asm.hex contents (e.g. only affecting one or two
memory locations), then you might find it quicker to use the “mode 3” feature described
above, to avoid the time (about 1 minute) needed to recompile your Xilinx project.

phys364/lab27.tex page 27 of 27 2014-12-08 12:49

http://positron.hep.upenn.edu/wja/p364/2014/files/lab27_part4_asm.txt
http://positron.hep.upenn.edu/wja/p364/2014/files/assembler.html

