
Physics 364, Fall 2014, reading due 2012-09-07.
Email your answers to ashmansk@hep.upenn.edu by 11pm on Sunday

Course materials and schedule are at http://positron.hep.upenn.edu/p364

Assignment: (a) First read carefully through my notes (starting on next page), so
that you have a good overview of which points I consider most important for you to
absorb from the reading. (b) Then skim through Eggleston’s chapter 2 (AC circuits),
pausing to read carefully in places where the material is unfamiliar to you. On a
first reading, don’t get too bogged down in the derivations: if you have time, you can
go back and re-read selected details. A few important sections to read carefully are
2.4.1–2.4.4, 2.5.1–2.5.3, 2.6.1–2.6.5.1, and 2.9. (c) Then email me your answers to the
questions below.

1. The equation Vout = R2

R1+R2
Vin describes a voltage divider (shown below, left) both

for constant Vin and for sinusoidal Vin(t). (a) To turn this circuit into a high-pass
filter, which resistor (R1 or R2) would you replace with a capacitor? (b) To make
a low-pass filter? (c) In the low-frequency (f → 0) limit, does a capacitor look like
a short-circuit (Z → 0) or an open-circuit (Z → ∞)? (d) In the high-frequency
(f → ∞) limit? (e) How do your answers to parts c and d help you to check your
answers for parts a and b? (f) If you build a low-pass filter using R = 1 kΩ and
C = 1 µF, at what frequency f (in Hz, i.e. cycles/second) will the ratio of amplitudes
|Vout|/|Vin| be 1√

2
≈ 0.707? Remember f = ω

2π
.

2. In the above-right figure, trace A shows a square-wave input Vin(t). (a) To turn
trace A into Vout(t) resembling trace B, which resistor (R1 or R2) would you replace
with a capacitor? (b) To turn trace A into Vout(t) resembling trace C? (c) If you
think “derivative ∼ fast change” and “integral ∼ slow average,” is it the high-pass
or the low-pass configuration that is (approximately) integrating Vin? (d) Which
configuration (high-pass or low-pass) is (approximately) differentiating Vin?

3. Is there anything from this reading assignment that you found confusing and would
like me to try to clarify? If you didn’t find anything confusing, what topic did you
find most interesting?

4. How much time did it take you to complete this assignment?
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By the end of Lab 3, you will have tried out the oscilloscope and function generator,
and you will see your voltage divider respond to a sinusoidal input: the amplitude
will reduced by the expected factor R2/(R1 + R2). The key idea so far in the course
has been the voltage divider. We used it not only as a circuit fragment performing
a desired function (dividing down Vin to get Vout), but also as a means of modeling
the output of an imperfect voltage source when a finite load is applied. This week,
the key idea will be impedance, which generalizes resistance to include capacitors and
inductors. Using the impedance concept, we will generalize the voltage divider by
replacing one resistor (or sometimes both) with a capacitor (or sometimes a combi-
nation of resistors, capacitors, and inductors).

A capacitor, shown below (left), is a two-terminal component that stores energy in the
electric field between two conducting plates. When potential difference V is applied
between the two terminals, the two plates store charges +Q and −Q, respectively,
where C = Q/V is called the capacitance (symbol C, unit F = farad): 1 F = 1 C/V.
Applying 1 V across the leads of a 1 µF capacitor stores ±10−6 coulombs on the two
plates. Circuit symbols for capacitors are shown below (right).1

Writing Q = CV and differentiating w.r.t. time, we get I = C dV
dt

: the larger the
current, the faster V changes. If you could charge and discharge a capacitor with an
ideal current source,2 as shown below (left), you could make a lovely triangle wave.
If the current to charge up the capacitor instead comes from the circuit shown below
(right),3 Vcap asymptotically approaches the applied voltage: Vcap = (1− e−t/RC)Vin.

Let’s redraw that last circuit so that it looks like our familiar voltage divider, but with
the bottom resistor replaced by a capacitor (see below, left). With no load connected
at Vout, the current through the resistor equals the current through the capacitor, and
I = C d

dt
Vout. Using IR = (Vin− Vout), we get d

dt
Vout = 1

RC
(Vin− Vout). In the limiting

case where Vout stays very small (Vout � Vin), Vout approximates the integral of Vin:

1The lower symbol is used only for polarized capacitors, whose dielectric can be damaged if a
voltage of the wrong polarity is applied.

2Alas, good current sources are far more unusual than good voltage sources.
3This figure and several others this week are borrowed from Harvard’s course Physics 123.
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Vout ≈ 1
RC

∫
Vin dt [in Vout � Vin limit]. Looking back at the above-right graph, for

constant Vin, Vout starts out looking like the integral of Vin (i.e. rising linearly), but
the approximation Vout � Vin breaks down for t > 0.1 RC or so.

Now look at the above-right circuit. The current through the capacitor is I =
C d

dt
(Vin− Vout), and (with no load connected) Vout = IR, so Vout = RC d

dt
(Vin− Vout).

In the limiting case d
dt
Vout � d

dt
Vin, the output approximates the derivative of the

input: Vout ≈ RC dVin/dt [in Vout � Vin limit]. If you look at the bottom Vout graph
of Eggleston’s figure 2.7 and the top Vout graph from his figure 2.9, you can see to
what degree these two circuits approximate integration and differentiation of Vin.

We looked above at RC circuits in the time domain. Let’s now look in the frequency
domain at circuits involving resistors, capacitors, and inductors. Ohm’s law relates
the current through a resistor with the voltage across it: V = IR. Now consider
placing across a resistor a sinusoidal voltage at frequency f = ω

2π
: V (t) = Vp cos(ωt),

where the subscript p means “peak” (i.e. amplitude).

Digression:4 a circuit’s response to sine waves is important because combinations
of sines and cosines form solutions to the linear differential equations that describe
linear circuits. A linear circuit has the property that its output, when driven by the
sum of two input signals, equals the sum of its individual outputs when driven by
each input signal in turn. If O(A) represents the output when driven by signal A,
then a circuit is linear if O(A+B) = O(A) +O(B). A linear circuit driven by a sine
wave at some frequency f always responds with a sine wave at the same frequency
f , though in general the phase and amplitude are changed. Circuits designed using
ideal resistors, capacitors, and inductors are perfectly linear; even circuits built using
real-world resistors, capacitors, and inductors are linear to a remarkable degree. This
is why we place so much emphasis on sinusoidal inputs.

OK, back to the main thread: we place across a resistor a sinusoidal voltage at
frequency f = ω

2π
: V (t) = Vp cos(ωt). The current through the resistor is I(t) =

V (t)/R = (Vp/R) cos(ωt). The current and voltage are in phase with one another.
So for many expressions of interest, like Vout(t)/Vin(t), the cos(ωt) factor just cancels
out, which is very convenient.

Now place the same V (t) = Vp cos(ωt) across a capacitor: the current through the

4Most of this paragraph is taken verbatim from Horowitz & Hill.
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capacitor is I(t) = C d
dt
V (t) = −ωVp sin(ωt). The current and voltage are 90◦ out of

phase with one another. For sinusoidal V (t), the amplitude of I(t) is still proportional
to the amplitude of V (t), but the phase shift makes it impossible for us to cancel out
the sines and cosines. That’s annoying. It would be great to have a concise way to
represent the fact that (for sinusoidal voltage of a given frequency) I(t) is proportional
to V (t) but with a phase shift.

Conveniently, the algebra of complex numbers provides a clean notation for represent-
ing voltages and currents while keeping track of phase shifts. To represent a sinusoidal
voltage with arbitrary phase, we are used to writing V (t) = Va cos(ωt) + Vb sin(ωt).
Let’s instead introduce a complex quantity5

V(t) = (Va − jVb)ejωt = (Va cos(ωt) + Vb sin(ωt)) + j(Va sin(ωt)− Vb cos(ωt))

and we’ll agree that any time we want the physical voltage (which must be a real
number), we will take the real part of V(t): V (t) = Re(V(t)). If I now define a
complex amplitude Vp = Va − jVb, I can represent V (t) = A cos(ωt) by writing
Vp = A, and I can represent V (t) = B sin(ωt) by writing Vp = −jB. In the first
case,

V (t) = Re(V(t)) = Re(Vpe
jωt) = Re(A cos(ωt) + jA sin(ωt)) = A cos(ωt),

and in the second case,

V (t) = Re(V(t)) = Re(Vpe
jωt) = Re(−jB cos(ωt) +B sin(ωt)) = B sin(ωt).

Eggleston’s text (section 2.6) goes through this formalism in far more detail, in case
it is unfamiliar to you.

Returning to the capacitor, we can now write Ip = jωVp, and by defining a capacitor’s
impedance to be Z = −j/(ωC) = 1/(jωC), we can write something that looks
more like Ohm’s law: Vp = IpZ. The fact that Z for a capacitor is purely imaginary
compactly expresses the 90◦ phase shift between I and V . The impedance for a
resistor is still just R.

Now let’s look at the same two RC circuits (shown below) in the frequency domain,
using our generalized version of Ohm’s law. By generalizing resistance to impedance,
we can write the response of a generalized voltage divider to a sinusoidal input:
we find Vout = Z2

Z1+Z2
Vin. Replacing R2 by a capacitor (middle figure), we find

Vout

Vin

=
1/(jωC)

R + 1/(jωC)
=

1

1 + jωRC
=

1

1 + j 2πfRC
.

5Confusingly, engineers use j =
√
−1 because i is often used to represent small currents. So in

electronics, DeMoivre’s identity reads ejθ = cos θ + j sin θ. Note that I will use boldface (V) to
denote a complex number, while Eggleston uses a circumflex (V̂ ). Another source of confusion is
that engineers use ejωt for the time-dependence, while physicists tend to use e−iωt.
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This circuit (middle figure) is called a low-pass filter: the lowest-frequency signals
pass through unscathed to Vout, while the highest-frequency signals are shorted to
ground by the capacitor. At low frequency (f � 1

2πRC
), Vout ≈ Vin. At high frequency

(f � 1
2πRC

), Vout � Vin, and they are 90◦ apart in phase. The ratio of amplitudes is

|Vout|
|Vin|

=
1√

1 + (2πfRC)2
.

At the corner frequency, defined as f3dB = 1
2πRC

, the ratio of amplitudes is 1√
2
≈ 0.707.

Because 20 log10(1/
√

2) ≈ −3.010, we say that at f = f3dB, Vout is down three decibels
(3 dB) from its maximum.

For the right-hand circuit above, where R1 is replaced by a capacitor, we find

Vout

Vin

=
R

1/(jωC) +R
=

jωRC

1 + jωRC
=

2πfRC

2πfRC − j
,

with amplitude ratio
|Vout|
|Vin|

=
2πfRC√

1 + (2πfRC)2
.

This is a high-pass filter: the highest-frequency signals pass through to Vout, while
the lowest-frequency signals are blocked by the capacitor. At high frequency (f �

1
2πRC

), Vout ≈ Vin. At low frequency (f � 1
2πRC

), Vout � Vin, and they are 90◦ apart
in phase. Once again, at f3dB = 1

2πRC
, the ratio of amplitudes is 1√

2
.

I show below a graph of |Vout|/|Vin| as a function of 2πRC f (in other words, f/f3dB),
for the low-pass filter (left) and the high-pass filter (right).
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I show below the same two graphs on a log-log scale (also known as a Bode plot).
I express |Vout|/|Vin| in decibels by plotting 20 log10(|Vout|/|Vin|) on the vertical axis,
and I plot log10(2πRC f) on the horizontal axis. Notice how the log-log scale clarifies
the asymptotic behavior. At high-frequency, the low-pass filter falls off as 1/f (a slope
of −1 on ordinary log-log axes), and at low-frequency, the high-pass filter rises as f
(a slope of +1 on ordinary log-log axes). In electronics, one refers to 1/f behavior as
a slope of −20 dB per decade or alternatively as −6 dB per octave; and one refers
to f behavior as a slope of +20 dB per decade or as +6 dB per octave. This sounds
confusing at first, but it makes more sense when you remember that 6 dB means a
factor of 2 in amplitude (or a factor of 4 in power), and that 20 dB means a factor of
10 in amplitude (or a factor of 100 in power). An octave is a factor of 2 in frequency,
and a decade here means a factor of 10 in frequency. Only on the log-log plot can
you see why f3dB is called the corner frequency.

An inductor is a two-terminal component that stores energy in a magnetic field.
An inductor opposes changes in current by developing a voltage proportional to the
rate of change of current: V (t) = L d

dt
I(t). For sinusoidal signals, Vp = jωL Ip. So

an inductor L has impedance Z = jωL. Replacing R1 with inductor L in a voltage
divider yields Vout/Vin = R/(R+jωL) = 1/(1+jωL/R), a low-pass filter with f3dB =
R/(2πL). Replacing R2 with inductor L instead yields Vout/Vin = jωL/(R + jωL),
a high-pass filter.

component impedance f → 0 limit f →∞ limit

resistor R R R
capacitor 1/(jωC) open short
inductor jωL short open

The table above summarizes the complex impedance values used for resistors, ca-
pacitors, and inductors. By the way, inductors in series add up just like resistors,
and inductors in parallel combine as L1L2

L1+L2
. Capacitors are trickier: capacitances add

when placed in parallel, and capacitors in series combine as C1C2

C1+C2
. If you remember

that impedances combine in the same way as ordinary resistances, the upside-down
convention for combining capacitors just follows from ZC = 1/(jωC). Never write
C1 ‖ C2, because it is unclear whether you are really talking about capacitors in series
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or in parallel; instead (if the need ever arises), write ZC1 ‖ ZC2, which is unambiguous.

Because I and V are 90◦ out of phase for a capacitor or an inductor, these devices
only store energy; they do not dissipate any power. In the complex notation, the
time-averaged power dissipated is P = Re(VI∗) = Re(IV∗): you multiply voltage by
the complex-conjugate of current (or vice-versa) and then take the real part.6

Notice the ±90◦ phase shifts of the low-pass and high-pass filters, for frequencies at
which Vout � Vin. Recalling that differentiating or integrating a sine shifts its phase
by ±90◦ (since sine and cosine are out of phase by 90◦), you can see the “integrator”
and “differentiator” we discussed at the beginning, at work here in their domain of
validity (|Vout| � |Vin|). For the high-pass filter at f � f3dB, Vout is ahead of Vin by
90◦; for the low-pass filter at f � f3dB, Vout lags behind Vin by 90◦. For the high-pass
as f → ∞ or the low-pass at f → 0, the phase shift approaches zero. At f3dB, the
phase shift is ±45◦.

Suppose we want to pick out one frequency, like that of our favorite radio station, while
suppressing other frequencies. If we replace R2 in our voltage divider with a parallel
combination of inductor and capacitor (left figure, below), we get a bandpass filter.
Using the generalized voltage-divider equation, we get Vout/Vin = Z2

R+Z2
, where Z2

is the impedance of the parallel LC combination: Z2 = jωL ‖ 1
jωC

, which we can

rewrite as Z2 = jωL
1−ω2LC

. You can see that when ω2LC = 1, i.e. when f = 1
2π
√
LC

, Z2

becomes very large, while for ω → 0 and for ω → ∞, Z2 → 0. So Vout/Vin peaks at
its resonant frequency fres = 1

2π
√
LC

and has a bandwidth ∆f ≈ 1
2πRC

, as shown

below (center). We’ll use this circuit to pick out an AM radio station in a future lab!

You might remember that the input resistance of the oscilloscope is 1 MΩ. This
is quite high, but there are times when we might like an even higher Rin, so that
connecting the scope to our circuit alters the observed voltages as little as possible.
More importantly, the cables from our circuit to the scope have non-negligible ca-
pacitance. For instance, standard RG58 coaxial cable (the kind that normally has
BNC connectors on each end) has a capacitance of about 30 pF per foot, or about
100 pF for a 1 m length of cable. The cable capacitance forms a low-pass filter with
the scope’s input resistance: f3dB = 1

2πRC
≈ 1.6 kHz. While the scope is capable of

observing frequencies up to 100 MHz or so, the cable capacitance badly attenuates

6Recall that the complex conjugate of z = a+ jb is z∗ = a− jb.
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and phase-shifts anything above a kHz or so. What to do?! A ×10 oscillo-
scope probe (above-right figure) solves both of these problems at once: it increases
Rin from 1 MΩ to 10 MΩ and cancels out the phase shift and frequency-dependent
attenuation. The head of the probe is a 9 MΩ resistor in parallel with an adjustable
capacitor. The impedance Zprobe = 9 MΩ ‖ 1

jωCprobe
forms a voltage divider with the

cable+scope impedance Zc.s. = 1 MΩ ‖ 1
jωCcable

. By using a tiny screwdriver to adjust

Cprobe, you can arrange that Zprobe = 9× Zc.s.. (This occurs when Cprobe = 1
9
Ccable.)

Then if you call the signal you want to observe Vin, and you call the signal actually
seen by the scope Vout, we have Vout/Vin = Zc.s.

Zprobe+Zc.s.
= 1

10
, with no phase shift or

frequency dependence. Also, we have increased Rin to 10 MΩ. Jose will show you
in class how this adjustment is actually done. It’s really sort of a neat trick! You
observe a 1 kHz square wave through the probe, and you turn the screw until it really
looks like a square wave. (If there is a frequency-dependent attenuation, then the
various harmonics will appear in the wrong proportions, and the square wave won’t
look right. You’ll see!)

Finally, two somewhat out-of-place topics that I thought worth mentioning here.7

First, the voltage across the terminals of a wall socket (in the United States) is 117
volts rms, 60Hz. The amplitude is 165 volts (330 volts pp).

Second: small-signal resistance. We often deal with electronic devices for which I
is not proportional to V . In such cases there’s not much point in talking about
resistance, since the ratio V/I will depend on V , rather than being a nice constant,
independent of V . For these devices it is useful to know the slope of the V -vs.-I curve,
in other words, the ratio of a small change in applied voltage to the resulting change
in current through the device, ∆V/∆I (or dV/dI). This quantity has the units of
resistance (ohms) and substitutes for resistance in many calculations. It is called the
small-signal resistance, incremental resistance, or dynamic resistance.8 This concept
is especially useful if you want to superimpose a small AC signal on top of a larger DC
voltage. The DC level sets the “operating point” (for example, the average current
through a diode), and the slope of the diode’s V -vs.-I curve at the operating point
determines an effective resistance of the diode for small AC signals that you may
superimpose.

7I found them both while re-reading Chapter 1 of Horowitz & Hill recently. These two paragraphs
are more-or-less taken directly from their text.

8The usefulness of small-signal resistance will be clear when we study transistor circuits, a few
weeks from now.
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