
Physics 364, Fall 2014, reading due 2014-11-02.
Email your answers to ashmansk@hep.upenn.edu by 11pm on Sunday

Course materials and schedule are at http://positron.hep.upenn.edu/p364

Assignment: (a) First read (or at least skim) Eggleston’s chapter 8 (Digital circuits
and devices, pages 200–233). For this week, you can stop at page 220; we’ll cover the
rest in later weeks. (b) Then read through my notes (starting on next page), which
directly relate to what we will do in Lab 19. (c) Then email me your answers to the
questions below.

1. What is the key advantage of representing information in digital form?

2. Write out the truth table for a two-input NAND gate. Is it possible to combine
several NAND gates to perform the two-input AND function? Is it possible to combine
several AND gates to perform the two-input NAND function? (NAND and NOR are
known as “universal gates,” because either one of them can be used to implement
arbitrary logical functions.)

3. What is the key property of a flip-flop (also called an “information register” in the
textbook) that makes it so useful for solving a whole new class of problems?

4. Is there anything from this reading assignment that you found confusing and would
like me to try to clarify? If you didn’t find anything confusing, what topic did you
find most interesting?

5. How much time did it take you to complete this assignment? Also, I continue to
welcome suggestions for ways in which I might adapt the course to help you to learn
most efficiently.

phys364/reading10.tex page 1 of 10 2014-10-31 12:56



Lab 19 begins the digital section of the course, covering roughly the last 1
3

of the
semester. Lab 19 itself will be a very brief introduction to digtial logic. Then we
will spend about two weeks on Arduino programming. Finally the last two weeks
of the semester will include four days on flip-flops programmable logic (FPGAs). A
key goal of the first 2

3
of the course was for you first to see how handy opamps can

be, and then to learn enough about transistors to understand in principle how an
opamp works. A key goal for this last 1

3
will be for you first to learn to program tiny

computers (called Arduinos) to perform various tasks, and in parallel to learn enough
about digital logic to understand in principle how a computer works — how to go
conceptually from FETs to logic gates to flip-flops to memories, and then on to state
machines that go step-by-step through a sequence of operations, and then finally to
a microprocessor that reads and executes instructions stored in its Random Access
Memory.

So far in this course we have dealt with analog signals: an analog signal (voltage,
current, wave intensity, etc.) is a continuous quantity, represented by a real number.
If a and b are both allowed values for an analog signal, then 1

2
(a+b) is also an allowed

value, as is any other value between a and b.

By contrast, a digital signal takes on only discrete values. Any allowed value of a
digital signal can be represented by an integer, once some real-valued scale factor is
chosen. The left figure below shows an analog signal vs. time, and the right figure
shows a digital representation of the same signal, in which only discrete signal values
are permitted. (At this stage, time is still a continuous variable in both graphs.)

Many interesting quantities are inherently discrete in nature: your bank account
balance (quantized in hundredths of a dollar), your birthday (quantized in days), the
number of long-sleeved black jersey shirts you own, etc. Others, like voltages, currents,
wave intensities, etc., are more naturally represented as continuous quantities, but
can be approximated by a suitable choice of discrete values.

Why would you want to replace the continuous analog signal in the above-left graph
with the discrete digital signal in the above-right graph? There are basically two
reasons. First, digital values can be replicated perfectly, while analog values
always degrade when copied or transmitted. Second, digital values can be ma-
nipulated by a digital computer such as your notebook computer, an Arduino
board, or the processor on your smartphone.

The reason why analog signals always degrade with replication is that any transmis-

phys364/reading10.tex page 2 of 10 2014-10-31 12:56



sion or replication process will superpose some random noise on top of the desired
signal. In the left and right graphs below, I superpose a small random noise voltage
on top of an analog signal (left) and a digital representation of that signal (right).

While it is easy for me to remove the noise from the digital signal (i.e. recovering the
original digital signal) just by rounding each value to the nearest integer, I have no
way a priori to remove the noise from the analog signal, unless I am given additional
information about the original form of the signal. Suppose I want to send each of
these two signals such a great distance that the message will need to be repeated (e.g.
amplified and retransmitted) 100 times between the origin and the destination. In
the case of the digital signal, as long as the noise added at each intermediate step is
much smaller than the spacing between permitted signal values, I will be able at each
stage to recover the original digital message before retransmission. Hence, the 100th
copy will look no worse than the 1st copy. By contrast, the analog signal steadily
degrades at each step. After 100 retransmissions, the two signals look like this:

The analog signal continues to degrade with each successive copy, while the digital
copy always permits the original signal to be recovered, as long as the noise level
between copies is small enough to allow every point to be assigned unambiguously to
the correct discrete signal value.

Imagine seeing a 100th-generation copy (i.e. a copy of a copy of a copy of . . . a copy)
of each of the following:

• An old family photo (where copy n is made by running copy n − 1 through a
xerox machine): you might have occasionally seen really old course handouts
that suffer from a similar problem, because the original document is no longer
available for re-printing.

• A house key (where copy n is made by taking copy n−1 to the hardware store):
typically the key doesn’t work unless you jiggle it for a long time in the lock.

• A 1970s cassette audio tape (where copy n is made by running copy n − 1
through the sort of boombox that has two tape decks): it will sound like music

phys364/reading10.tex page 3 of 10 2014-10-31 12:56



played over a poor telephone connection.

• Your signature (where copy n is made by a forger who is only able to look at
copy n− 1): it is unlikely to show any resemblance to your original signature.

• A sidewalk artist’s drawing of your face (where copy n is made by a sidewalk
artist who is only able to look at copy n − 1, not at you): it probably won’t
look anything like you.

• A JPEG photograph on your computer (where copy n is made by copying byte-
by-byte the contents of the disk file for copy n− 1 to a new disk file): it will be
a perfect copy, unless a hardware failure occurs.

• The lock vendor’s serial number for your house key (where copy n is made by
reading a 10-digit number from the slip of paper n− 1 and writing down those
ten digits onto a new slip of paper): unless someone writes down the wrong
number, the information will be perfectly replicated.

• An MP3 file on your computer (where copy n is made by copying the contents
of the disk file for copy n− 1 to a new disk file): it will be a perfect copy.

• A typewritten paragraph of text (where copy n is made by re-typing copy n−1):
as long as each typist proofreads his or her work, the 100th copy will be perfect.

• A sequence of 1000 DNA base pairs (each of which takes on one of four possible
values: A, C, T, G): unless there is a transcription error or a mutation at some
intermediate stage, the 100th copy will be perfect.

• A sequence of 100 decimal digits: again, can be copied perfectly, unless there is
human error.

• A data file on your computer (where copy n is made by copying byte-for-byte
the contents of copy n−1): excepting hardware failures, the copy will be perfect.

To digitize (could be called “discretize”) means that we use a finite set of integers to
represent the possible values of the physical quantity of interest. The initial discretiza-
tion discards some information, but once the information is in discrete (digital) form,
it can be reproduced perfectly, as long as any noise added by the copying process is
much smaller than the step size between allowed discrete values.

Next week, we will talk at length about methods and consequences of converting back
and forth between continuous analog signals and discrete digital signals. For now,
let’s move on to discussing the second key property of digital information: that it can
be processed by a digital computer (and the digital logic circuits of which a digital
computer is composed).

phys364/reading10.tex page 4 of 10 2014-10-31 12:56



First let’s think about various ways that integer data can be represented. To ten-
fingered humans, the most natural representation for integer data nowadays is a
sequence of decimal values, e.g. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17. An N -digit decimal number is written in the form aN−1aN−2 . . . a2a1a0, which
represents the quantity

∑N−1
n=0 an10n. Each base-ten numeral can take on ten discrete

values. But many useful devices, such as the following device for illuminating an
LED, have only two discrete states: ON and OFF. So it turns out to be useful to
represent integers in binary form, as a sequence of ones and zeros.

An N -bit binary number is written in the form aN−1aN−2 . . . a2a1a0, which represents
the quantity

∑N−1
n=0 an2n. Each base-two numeral can take on only two discrete values:

0 or 1. Thus, the sequence 0 . . . 17 written in decimal above would look like this in
binary: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110,
1111, 10000, 10001. I could represent any of these numbers (in fact any number
0 ≤ n ≤ 31) using the ON/OFF states of five LEDs.

Binary is convenient because you can, in principle, just use a simple comparator to
decide which of the two possible states you are looking at. For example, I could
imagine using a circuit like the one shown below (with a +5 V power supply for
the comparator) to assign inputs 0 ≤ Vin < 2.5 V to the OFF state and inputs
2.5 V < Vin ≤ 5 V to the ON state.

It turns out to be quite easy (even easier than the comparator circuit above would
suggest) to build circuits that are either ON or OFF, with no in-between. For example,
the CMOS inverter shown below (left) uses just one n-channel (on the bottom) and
one p-channel (on the top) MOSFET to implement the logical NOT function. (It’s
basically a CMOS push-pull with the nMOS and pMOS FETs interchanged.) Using
power supply voltage VDD = +5 V to represent ON and ground to represent OFF,
this circuit will output the logical complement of its input: if the input is ON, the
output will be OFF, and vice versa.

phys364/reading10.tex page 5 of 10 2014-10-31 12:56



The right-hand figure above shows Vout as a function of Vin for this inverter. Normally
Vin would be either very close to 0 V or very close to +5 V, but in this case let’s look
to see where the transition occurs. To be fair, the only reason that the transition
happens right at Vin = 2.5 V is that I chose a pair of MOSFETs with Vthreshold = 2.5 V.
If you used MOSFETs whose Vth varied a bit from part to part, the exact threshold
would vary somewhat from 2.5 V. Real CMOS logic devices are designed to accept
any Vin > 3.7 V as ON and any Vin < 1.3 V as OFF. The region 1.3 V < Vin < 3.7 V
is considered ambiguous, with resulting Vout not guaranteed to take on one value or
the other. Conversely, a CMOS logic device guarantees Vout > 4.7 V for the ON state
and Vout < 0.2 V for the OFF state. Strictly speaking, the +5 V and 0 V states are
called “HIGH” and “LOW,” respectively, rather than “ON” and “OFF,” for reasons
alluded to in the next footnote.

There is a formal Boolean algebra for manipulating variables whose values can take
on only two values. That algebra is nicely summarized in Eggleston’s table 8.3 (page
209), so I won’t repeat it here, except to note that he writes A + B to mean “A OR
B,” writes A ·B to mean “A AND B,” and writes A to mean “NOT A,” which is all
pretty standard. Normally “1,” “ON,” “TRUE,” “HIGH,” and “+5 V all refer to one
state, while “0,” “OFF,” “FALSE,” “LOW,” and “0 V” all refer to the other state.1

As noted above, the CMOS implementation of an inverter looks like the left figure
below. The schematic symbol for an inverter is shown on the right figure below.
The triangle indicates buffering/following a signal, and the circle indicates logical
inversion. So the function performed by this circuit is OUT = IN.

1There are two exceptions, which I will just gloss over now, and will mention in more detail later.
The first is that not all digital logic uses 0 V and +5 V to represent the two logic states. For example,
more recent CMOS logic uses either +3.3 V or +2.5 V instead of +5 V; some older families of logic
circuits use both positive and negative voltages. Second, some signals are “active low,” meaning
that they sit at +5 V (or whatever value is used for VDD) when nothing is happening, and they are
momentarily moved to 0 V to indicate a special event, e.g. the completion of a requested operation.
In this case, the pin would be labeled “DONE” (pronounced “done bar”) to indicate active-low,
as opposed to being labeled “DONE” if it were (the usual case) active-high. You may see a few
examples of active-low input/output pins when we work with Arduinos.

phys364/reading10.tex page 6 of 10 2014-10-31 12:56



Here’s how the CMOS inverter works: When Vin ≈ 0 V, the nMOS FET (lower)
is cut off (nonconducting) and the pMOS FET (upper) is active (conducting), so
Vout ≈ VDD. When Vin ≈ VDD, the nMOS FET (lower) is active (conducting) and the
pMOS FET (upper) is cut off (nonconducting), so Vout ≈ 0 V.

If we put two CMOS inverters in a row, we get a CMOS buffer, shown below (left),
whose digital schematic symbol is shown below (right). Also shown on the right is
Vout as a function of Vin, for the (atypical) case of Vin varying continuously. The
logical function performed is OUT = IN. The main point of a logical buffer is largely
the same as that of an analog follower: to make a stronger copy of the input signal.
For example, if you need to send a digital signal a very long distance, you might want
to buffer it several times along the way, so that the signal never degrades enough to
become ambiguous. A more common use of logic buffering is to permit a logic signal
to supply a lot of current, e.g. to illuminate an LED or to fan out to a large number
of downstream logic devices. (Even if these logic devices have inputs that draw no
DC current (by virtue of being the “gate” terminals of FETs), the devices and wires
have a finite capacitance, requiring some current to flow during each transition when
the state changes between LOW and HIGH.)

The figure below shows a CMOS NAND circuit. On the left is the implementation
using two pMOS and two nMOS FETs. On the lower-right is the schematic symbol
for the NAND function. (The D-shaped symbol represents AND and the bubble
on the output represents logical inversion.) The upper-right shows (top to bottom)

phys364/reading10.tex page 7 of 10 2014-10-31 12:56



input A, input B, and output, vs. time, where I’ve offset the three traces from each
other vertically so that you can distinguish them. The logical function performed is
OUT = A ·B.

If both inputs are HIGH, then nMOS FETs N1 and N2 are both active, while pMOS
FETs P1 and P2 are both cut off; the result is Vout = 0 V. If either input goes LOW,
then at least one of N1 or N2 is cut off, and at least one of P1 or P2 is active; the
result is Vout = VDD. The result is HIGH unless both inputs are HIGH. By the way,
the “NAND circuit” is technically called a “NAND gate.” The graph shown below
(borrowed from D.V. Bugg’s electronics book) motivates why a circuit performing a
logical function might be called a “gate:” you can see input A allowing or disallowing
the passage of a stream of pulses from input B, as if it were a kind of door that you
could open or close. Don’t be confused by the re-use of the word “gate.” A circuit
that performs a NAND operation is called a “NAND gate.” That usage is completely
unrelated to the fact that one terminal of a FET is called the “gate.”

Remarkably enough, the way to make a CMOS AND gate is to tack an inverter
onto the end of a CMOS NAND gate, as shown in the figure below (left). On the
upper-right are (top to bottom) input A, input B, and output, again vertically offset
so that you can see them. On the lower-right is the schematic symbol for an AND
gate. It is just like the NAND symbol, but without the bubble on the output. The
logical function performed is OUT = A · B. You can see that OUT is only HIGH if
both A and B are HIGH.

phys364/reading10.tex page 8 of 10 2014-10-31 12:56



The figure below shows a CMOS NOR gate. On the left is the implementation
using two pMOS and two nMOS FETs. On the lower-right is the schematic symbol
for the NOR function. (The Star-Trek-esque symbol represents OR and the bubble
on the output represents logical inversion.) The upper-right shows (top to bottom)
input A, input B, and output, vs. time, where I’ve offset the three traces from each
other vertically so that you can distinguish them. The logical function performed is
OUT = A + B. The output is LOW if either A or B (or both) is HIGH.

I think you can easily imagine tacking an inverter onto the end of a NOR gate to form
an OR gate. Another interesting function is XOR (exclusive or). XOR is HIGH if
either A or B (but not both!) is high; another way to look at it is that XOR is HIGH
if A 6= B, i.e. if A and B differ.

phys364/reading10.tex page 9 of 10 2014-10-31 12:56



The above-left graph shows the circuit symbols for AND, OR, and XOR. The way I
remember AND vs. OR is that the OR symbol looks like an AND symbol that has
been coerced into being more accomodating. The way I remember the XOR symbol
is that it looks like an OR symbol with an additional barrier. The above-right graph
shows (from top to bottom) input A, input B, A + B (A OR B), A ·B (A AND B),
and finally A⊕B (A XOR B).

It turns out that you can make an inverter out of a NAND by wiring its two inputs
together: A · A = A. By putting this inverter after a NAND, you have an AND. If

you invert both inputs of a NAND, you have OR, because A ·B = A + B. If you
invert the output of that OR, you have NOR. And so on. So it turns out that using
only NAND gates, you can build up any desired logical function. It turns out that
you can also do this using only NOR gates. So NAND and NOR are called “universal
gates,” because you could in principle build up any desired logical function by using
an arbitrary number of this one building block. If you have a recipe for making
unlimited quantities of NAND gates, you can perform any digital function you wish.

I really want to move on to talking about mathematical operations such as addition,
subtraction, and multiplication. I also want to mention two’s complement represen-
tation of negative numbers and hexadecimal representation of binary numbers. I also
want to hint at how “real” numbers are stored in floating-point representation within
a computer. And then I absolutely want to discuss so-called “sequential logic,” which
uses flip-flops to remember previously stored information. Eggleston’s chapter men-
tions all of these things, but I think I can do better. In any case, I’m out of time, so
I will have to write up these descriptions for you for next week’s reading. The whole
new class of problems enabled by flip-flops is the ability to have a circuit’s output
depend not just on the present values of the inputs, but to have it also depend on
previous inputs. A flip-flop gives a circuit the ability to remember previous inputs (or
outputs). This makes it possible, for example, to count from zero to ten. (How can
you count from zero to ten without remembering the last number that you counted?)
It also makes it possible to build a machine that steps through a sequence of states,
such as a traffic light, a washing machine, or a coin-counting vending machine. This
idea, in turn, can be generalized to the idea of a computer that executes a stored
sequence of instructions. During the next few weeks, the elucidation of these ideas
will be interleaved with the Arduino material that you will learn.

phys364/reading10.tex page 10 of 10 2014-10-31 12:56


