
Physics 364, Fall 2014, reading due 2014-11-16.
Email your answers to ashmansk@hep.upenn.edu by 11pm on Sunday

Course materials and schedule are at positron.hep.upenn.edu/p364

Assignment: (a) First read this week’s notes, starting on the next page. (b) Then
email me your answers to the questions below.

1. When two 16-bit numbers are added together in combinational logic (using a
bunch of AND, OR, XOR gates), why do some bits of the sum require more time to
update (time w.r.t. the time at which the input bits are updated) than others?

2. What role does the clock play in a synchronous digital logic circuit?

3. What are the roles of the D, Q, and clk pins on an edge-triggered D-type flip-flop?
What happens on the 0→ 1 transition of the clock?

4. Convert these three numbers into binary, decimal, and hexadecimal: 25510, 8016,
000010002. Optional (avoid this one if you are vegetarian): convert the binary number
1101 1110 1010 1101 1011 1110 1110 1111 (base 2) into hexadecimal (base 16).

5. Is there anything from this reading assignment that you found confusing and would
like me to try to clarify? If you didn’t find anything confusing, what topic did you
find most interesting?

6. How much time did it take you to complete this assignment?

phys364/reading12.tex page 1 of 18 2014-11-14 09:29

http://positron.hep.upenn.edu/p364


My dad emailed me this cartoon (from xkcd), which reminded me that I had once
spent an entire winter break thinking about a similar infinite-grid-of-one-ohm-resistors
problem. Since it never occurred to me to solve it using linear superposition, I instead
wrote a computer program to find the answer numerically. (This problem was given
to me as a challenge by the same person who gave me the four-bugs puzzle.)

Let’s step back for a moment for an overview of where the course has gone. After
a quick introduction to the lab equipment and some basic components (resistors,
capacitors, inductors, diodes, LEDs), we studied the remarkable things one can do
with opamps (voltage amplification, current amplification, mathematical operations
on voltage signals, . . . ). Then we learned enough about transistors to have some
feeling for (though not a detailed knowledge of) what makes an opamp’s amazing
behavior possible: we built and analyzed a transistor-based differential amplifier that
had reasonably high gain, and then we built a multi-stage high-gain differential am-
plifier that functioned as a simplified home-made opamp. We didn’t study the inner
workings of bipolar transistors in any detail, but the working principle of field-effect
transistors was straightforward enough to illustrate how a small signal can be used
to control a much larger signal (voltage or current). So in essence, we decomposed
the opamp into building blocks that we can understand.

Most of our study of opamps and transistors concerned linear circuits, in which a small
change in input signal yields a proportional change in output signal; an exception was
our study of comparators, whose output takes on only two values — one value for
Vin < Vthreshold and another value for Vin > Vthreshold. When we studied field-effect
transistors, we started out with linear circuits (amplifiers, followers), then moved on
to using FETs (built into the DG403 component) as analog switches, in which a small
control signal opens or closes a circuit, analogous to your finger flipping a light switch
on and off — for analog switch applications, the controlled circuit is an analog signal,
but the control signal itself is digital: indicating either ON or OFF.

phys364/reading12.tex page 2 of 18 2014-11-14 09:29



Then we used CMOS FETs to make digital logic gates, whose inputs and outputs
take on only two possible values: LOW (near ground) or HIGH (near VDD (or VCC),
the positive supply voltage, typically +5 V). In Lab 19, we first used push-button
switches then used CMOS FETs to implement a few logic gates. So I think you can
now understand how logic gates are implemented with CMOS FETs and how these
gates could be used, for example, to make a seatbelt buzzer sound IF [car engine is
on] AND [([driver is present] AND NOT [driver seatbelt is fastened]) OR ([passenger
is present] AND NOT [passenger seatbelt is fastened])].

Finally, after that very brief introduction to the digital world of ones and zeros, we
dove into programming tiny Arduino computers to carry out a variety of tasks, with
the goal of giving you a flavor for the low-level mechanisms involved in making a
computer interact with the real world. You made your own computer blink LEDs,
respond to button presses, measure time intervals, and synthesize waveforms. You
heard some of your classmates’ Arduinos sing familiar tunes — in some cases quite
loudly after amplification with a transistor-based circuit that you know how to build.
You taught your computer to measure analog signals, converting a real-world voltage
into a proportional integer (represented with ones and zeros) inside the computer, and
in Lab 22 you will make your Arduino periodically pulse an electromagnet, to provide
a driving force to a harmonic oscillator, whose motion your Arduino will measure by
reading out an accelerometer. OK, we didn’t build our own iPhone, but we got some
sense of how computers can interact with the physical world.

For the rest of the term, I want to try to fill in the conceptual gap between basic logic
gates (that can e.g. output the NAND of two inputs) and a simple microprocessor
(that can do the sorts of things an Arduino does). I hope to show you enough of
the building blocks of digital logic to convince you that you understand, at least in
principle, how a bunch of humble transistors can work together to form something as
capable as a computer.

Let’s get started.

In Lab 19, you saw how complementary pairs of nMOS and pMOS FETs (CMOS =
“complementary MOS”) could be used to implement an inverter, a NAND gate, an
AND gate, a NOR gate, etc. You can combine these to form “exclusive OR” like this:

A⊕B = (A+B) · (A ·B)

or spelled out in English,

A XOR B = (A OR B) AND NOT (A AND B)

or in the syntax of mathematical logic,

A⊕B = (A ∨B) ∧ (A ∧B)

phys364/reading12.tex page 3 of 18 2014-11-14 09:29



or in C-like syntax, (A ^ B) == (A | B) & !(A & B). (It’s annoying that there are
so many different and conflicting sets of symbols to represent the same operations.) It
turns out that combinations of these basic logic functions can implement an arbitrary
truth table, i.e. an arbitrary mapping of some set of input ones and zeros to some
desired corresponding set of output ones and zeros.

For example, suppose that I want a circuit that can add two 4-bit integers a and b:
s = a + b, where in this case the “+” sign means addition, not the OR operation.1

We have 0 ≤ a ≤ 15, 0 ≤ b ≤ 15, and 0 ≤ s ≤ 30, so we need 5 bits to represent the
sum of two 4-bit integers. We write a = 23a3 + 22a2 + 21a1 + 20a0, etc., so e.g. si
represents bit i of the sum.

a3 a2 a1 a0
+ b3 b2 b1 b0
s4 s3 s2 s1 s0

When we add a0 and b0, there are three possibilities: 0, 1, or 2. Remember that s0
(a binary digit, or “bit”) is only allowed to be 0 or 1. So if the answer is 2, then we
write s0 = 0 and we carry the 1 into the next column. Let’s define the carry bits to
be c0, c1, c2, c3, and re-write the sum like this:

c3 c2 c1 c0
a3 a2 a1 a0

+ b3 b2 b1 b0
s4 s3 s2 s1 s0

Now we can write boolean logic equations for s0 and c0 like this: s0 = a0 ⊕ b0, and
c0 = a0∧b0. The sum bit s0 is 1 if one (but not both) of a0 and b0 is 1: that’s an XOR
operation. The carry bit c0 is 1 if both a0 and b0 are 1: that’s an AND operation.

The equations for s1 and c1 are complicated by the possibility that c0 might be 1.
We want s1 to be 1 if an odd number of (c0,a1,b1) are 1, otherwise 0. And we want
c1 to be 1 if two or more of (c0,a1,b1) are 1. We can do that with this boolean logic:
s1 = c0 ⊕ [a1 ⊕ b1], and c1 = [(c0 ∧ a1) ∨ (c0 ∧ b1)] ∨ (a1 ∧ b1). I wrote the square
brackets [] only to emphasize that you can get the answer using ordinary two-input
logic gates (AND, OR, XOR); but in fact there exist n-input AND, OR, and XOR
gates. (The XOR of n inputs is 1 iff an odd number of inputs are 1.)

We could continue: s2 = c1 ⊕ a2 ⊕ b2 and c2 = (c1 ∧ a2) ∨ (c1 ∧ b2) ∨ (a2 ∧ b2), and
then s3 = c2 ⊕ a3 ⊕ b3 and c3 = (c2 ∧ a3) ∨ (c2 ∧ b3) ∨ (a3 ∧ b3), and finally s4 = c3.

Just to emphasize that these equations represent logic gates, which you now know how
to build out of CMOS transistors, the figure below shows graphically the equations
for s2 and c2.

1Note to self: next time consistently use ∨ and ∧ instead of + and · for OR and AND, to avoid
this ambiguity when talking about actual addition. Or else just use C-like syntax throughout.

phys364/reading12.tex page 4 of 18 2014-11-14 09:29



How do you subtract two integers? Well, to compute the difference a− b, you instead
compute the sum a + (−b). How do you find −b? You flip all of the bits and then
add 1. I’ll try to illustrate. A 4-bit unsigned integer a can take on values 0 ≤ a ≤ 15.
A 4-bit signed integer b can take on values −8 ≤ a ≤ +7. The table below shows the
unsigned and signed interpretations of the 16 possible 4-bit values.

bits unsigned signed
3210 interpretation interpretation
0000 0 0
0001 1 +1
0010 2 +2
0011 3 +3
0100 4 +4
0101 5 +5
0110 6 +6
0111 7 +7
1000 8 -8
1001 9 -7
1010 10 -6
1011 11 -5
1100 12 -4
1101 13 -3
1110 14 -2
1111 15 -1

To compute 5− 3 = 5 + (−3), we write 5 as binary 0101 and write −3 as binary 1101
and add. (The carry bits are in grey on top.)

(1) 1 1
0 1 0 1

+ 1 1 0 1
(1) 0 0 1 0

Interpreted as a 4-bit signed number, this is 0010 in binary or 2 in decimal, as
expected. The meaning of the leftmost bit, in parentheses, is harder to explain.2

2If you’re adding two n-bit signed integers, the result will properly fit into n bits if the top two

phys364/reading12.tex page 5 of 18 2014-11-14 09:29



This representation of n-bit signed integers is called two’s complement represen-
tation. It is how all modern computers (e.g. since the 1970s) represent negative
integers. Nowadays most computers use 32-bit integers: with unsigned interpretation
(e.g. unsigned int in the C programming language), they can represent values from
0 . . . 4, 294, 967, 295, and with signed interpretation (e.g. int in C), they can repre-
sent values from −2, 147, 483, 648 . . . + 2, 147, 483, 647. On an Arduino Due board,
an int uses 32 bits, as on a typical computer. On an Arduino Uno board, an int

uses only 16 bits, and thus can represent values from −32768 . . . + 32767.

By the way, one common point of confusion, if you’re new to programming, is the use
of the & operator (bitwise AND) in C or Java or on an Arduino. If you do a bit-by-bit
AND of two integers a and b (e.g. by writing

int a = 1234; int b = 4321; int d = a & b;

on your Arduino), here’s how it works. The decimal (base-ten) value 123410 has binary
(base-two) representation 100110100102, and decimal 432110 is binary 10000111000012.
(The subscript 2 or 10 after a numeral indicates base-two vs. base-ten.) To compute
d = a & b, we AND the bits one-by-one, i.e. di = ai ∧ bi:

1 0 0 1 1 0 1 0 0 1 0
& 1 0 0 0 0 1 1 1 0 0 0 0 1

0 0 0 0 0 1 1 0 0 0 0 0 0

The result is 110000002 = 19210. So it turns out that (1234 & 4321) is 192. This
particular example is completely frivolous, but the bit-by-bit AND operation is often
useful for picking out one bit of an integer: e.g. the Arduino expression (i & 8)

picks out bit 3 from the integer i, since 8 = 23. So (5 & 8) is 0, but (12 & 8) is 8.

It’s sort of a digression, but while we’re talking about binary arithmetic, let me also
mention multiplication. Suppose we want to multiply two 4-bit unsigned integers,
e.g. to calculate 13× 5 = 65.

1 1 0 1
× 0 1 0 1

1 1 0 1
0 0 0 0

1 1 0 1
0 0 0 0
1 0 0 0 0 0 1

This works just like long multiplication in decimal, except that the multiplication
table for single bits requires no memorization. Since the 1’s bit of 0101 is 1, the first
row of the result is 1101. Since the 2’s bit of 0101 is 0, the second row of the result is

carry bits are equal: cn = cn−1. For signed addition, if cn 6= cn−1, then you have an overflow
condition. For instance, if you try to compute (−2) + (−8) using 4-bit signed integers, the correct
result is −10 (decimal), which doesn’t fit into 4 bits — that’s an overflow. Incidentally, n-bit
unsigned addition overflows if cn 6= 0, for example if you add the unsigned 4-bit numbers 13 and 13
(decimal), the result is 26 (decimal), which doesn’t fit into 4 bits.

phys364/reading12.tex page 6 of 18 2014-11-14 09:29



0000 (shifted left one place). Since the 4’s bit of 0101 is 1, the third row of the result
is 1101 (shifted left two places). Since the 8’s bit of 0101 is 0, the fourth row of the
result is 0000 (shifted left three places). In case you’re confused by the final addition
step, I’ll rewrite it to show (in grey) where you carry the 1’s:

1 1 1 1
1 1 0 1

0 0 0 0
1 1 0 1

+ 0 0 0 0
1 0 0 0 0 0 1

Notice that 10000012 = 6510, i.e. 13 × 5 = 65. If you multiply two n-bit unsigned
integers, in general the result is a 2n-bit unsigned integer. While it might be fun for
me to show you in detail how to use logic gates to multiply a general 4-bit integer
a3a2a1a0 by another general 4-bit integer b3b2b1b0, I think you can already grasp the
idea well enough that the details would be a waste of time. Suffice it to say that the
general case can be reduced to a bunch of ANDs, ORs, XORs, etc., as in the case of
addition.

So I hope that I have now convinced you that (a) you understand how transistors
are put together to make simple logic gates, and (b) you understand in principle
how simple logic gates can be put together (perhaps in large quantities) to perform
arithmetic operations.

One last small digression: You might wonder what happens when you ask a computer
to use a real number, like π, or to evaluate the sine function. Amazingly enough,
when you use a float in C, the computer internally represents the number in a binary
version of scientific notation, called floating point representation. On most computers,
a float is 32 bits: one bit for the sign (s), eight bits for the (signed) exponent (e),
and 23 bits for the fraction (f). The sign s represents ±1. The exponent e has
possible values −126 ≤ e ≤ +127 (because the values −127 and −128 are reserved to
flag errors, infinities, etc.). The fraction f has possible values 1

8388608
≤ f ≤ 8388607

8388608
,

where 8388608 = 223. Combining the pieces, you get s× (1 + f)× 2e. So computers
internally use a form of scientific notation for real-valued (float) quantities.3

Now that you know how to make a bunch of transistors do arithmetic, you might
wonder what it takes to make a bunch of transistors count from zero to ten. If you
start counting 0, 1, 2, and around the time you reach 3, a Boeing 747 flies directly
overhead just 100 meters above the ground, you will probably be too distracted to
remember that the next value should be 4 — unless perhaps you were using your

3There is one special-case value of e to represent numbers very close to zero (and zero itself), for
which the 1 + f becomes 0 + f . Also it turns out that instead of storing e as an 8-bit signed integer,
the value e+ 127 is stored as an unsigned integer. In the unlikely event that these details matter to
you, see en.wikipedia.org/wiki/Single precision floating-point format .

phys364/reading12.tex page 7 of 18 2014-11-14 09:29

http://en.wikipedia.org/wiki/Single_precision_floating-point_format


fingers or a pad of paper to keep track of your current position in the sequence. An
operation like counting requires an internal state: not only do you need to know how
to go from i to i+ 1 (using addition); you also need to keep track of what i is.

So far, the (various combinations of) digital logic gates that we have considered are
capable of mapping the present values of n input bits into the present values of m
output bits. This is called combinational logic. The output depends only on the
present input.

To do something like counting, we need a digital device whose output depends not
only on the present input, but also on past inputs. It maintains an internal state. As
the inputs change, the device makes transitions through a sequence of internal states.
This is called sequential logic. Sequential logic can remember things: it is capable
of storing information to be retrieved at a later time.

The most fundamental sequential logic device is called a flip-flop. The simplest
(though not the most useful) flip-flop can be made from two NOR gates:

S R Qnext action
0 0 Q hold present state
1 0 1 reset
0 1 0 set
1 1 ? (not allowed)

This device has two inputs, called Set and Reset, and an output called Q. (I don’t
know why it’s called Q.) Also the output of the lower NOR gate is called Q, because
it contains the opposite of Q. Suppose that initially R = 1 and S = 0. Since at least
one of the upper NOR gate’s inputs is 1, its output must be 0, so Q = 0. Thus both
of the lower NOR gate’s inputs are 0, so its output must be 1, so Q = 1. Now if we
deassert R, so that R = 0 and S = 0, then nothing changes, because the top NOR
gate has a single 1 input (so we still have Q = 0), and the bottom NOR gate has two
0 inputs (so we still have Q = 1). If we then assert S, so that R = 0 and S = 1,
then the bottom NOR gate has at least one 1 input, so Q = 0; then the top NOR
gate has two 0 inputs, so Q = 1. If we then deassert S, so that once again R = 0
and S = 0, then we stay in the Q = 1 state, because the bottom NOR gate has at
least one 1 input, so Q = 0, and then the top NOR gate has two 0 inputs, so Q = 1.
By asserting R (but not S), the output is reset to Q = 0. By asserting S (but not
R), the output is set to Q = 1. In the normal state, neither S nor R is asserted,
i.e. both of them are held at 0: in this case, Q keeps whatever value it had before.
(The input combination R = S = 1 is forbidden, because it leaves the outputs in
the inconsistent state Q = Q = 0.) You can try this circuit out with mouse clicks at
www.play-hookey.com/digital/sequential/rs nor latch.html .

phys364/reading12.tex page 8 of 18 2014-11-14 09:29

http://www.play-hookey.com/digital/sequential/rs_nor_latch.html


The above circuit is technically known as an “SR latch” (though you can call it a
rudimentary form of an SR flip-flop). It is effectively a one-bit memory — and is in
fact one possible way to implement the “memory” inside your computer. This circuit
can help you to remember which of two states you are in, but it’s not yet obvious how
it helps you to count to ten. For instance, when you count to ten, there tends to be
a fixed interval between 1 and 2, between 2 and 3, etc. If you want a large group of
people to count together, to march together, or to play musical instruments together,
it’s helpful to have someone beating a drum or waving a baton. This is the role played
by the clock in most sequential logic circuits. In general, sequential logic depends
upon past outputs, but may or may not have a clock. But a very large fraction of the
sequential logic that implements useful devices (e.g. computers) is also synchronous
logic, meaning that it transitions from state to state in response to the beats of a
drum or the 0→ 1 transitions of a clock signal. A clock signal is a square wave that
toggles back and forth between the logic LOW and HIGH voltages, e.g. between 0 V
and +5 V in the digital circuits we have considered so far. A synchronous circuit
only updates its outputs immediately after the LOW→HIGH transition of the clock.
This is very useful for coordinating the activites of many different components, some
of which may be doing more complicated (hence slower) calculations than others.
Think of the members of a marching band arranging themselves to spell out words
on a football field. The clock plays the role of a camera or a strobe light periodically
capturing an image of the field. If the band members move to their next positions
shortly after each flash, they will be standing still in their correct locations in time for
the next flash: the strobe or camera will capture the desired sequence of clear words,
and will ignore the jumbled intermediate states present while members are finding
their new places between words.

A feature of real-world logic gates (e.g. those made with transistors) that I neglected
to mention before is that their outputs don’t change instantaneously in response to
their inputs. The transistors themselves, as well as the connections between them,
have some finite capacitance. And only a finite current flows through an active
transistor — even with VGS well above Vthreshold, there is still a finite resistance between
drain and source. So a finite time is required for an AND gate’s output to change
from 0 to 1 when its inputs change e.g. from 0,0 to 1,1. This time is referred to as
the logic gate’s propagation delay,4 sometimes also called gate delay. A typical
propagation delay for a logic gate is on the order of a nanosecond: the very tiny
CMOS logic gates used inside a modern computer are an order of magnitude faster
than this, while the big 14-pin logic gates (e.g. found in our lab) that you used in
Lab 19 were an order of magnitude slower than this. The finite propagation delay of
each AND, OR, XOR, etc., is the reason why a complicated calculation, like adding
two four-bit numbers, takes more time than a very simple calculation, like the AND
of two single bits.

4By the way, one reason why computer chip makers keep making their transistors physically
smaller each year is to reduce these capacitances.

phys364/reading12.tex page 9 of 18 2014-11-14 09:29



The figure below illustrates the propagation delays of the various outputs of a four-
bit adder.5 Initially, the adder’s two inputs are A = 01112, and B = 00002, so
S = A+ B = 01112; at time t = 100 ns, the second input changes to B = 00012, i.e.
input B0 changes from 0 to 1, so that S = A + B = 10002. The graph shows (vs.
time) B0, S0, S1, S2, and S3, from bottom to top.

In CircuitLab, each gate has a 10 ns propagation delay. Since there are two gates
between B0 and S0, the change in S0 occurs at t = 120 ns (i.e. 20 ns after the change
in B0). Three gates between B0 and S1 cause S1 to switch after 30 ns. Similarly, S2

and S3 change after 50 ns and 70 ns, respectively; S3 changes last because it depends
on all of the lower-order carry bits. A key point is that the output bits don’t all change
at the same time. Also, the times at which the various output bits will change have
some uncertainties, as different types of gates will in reality have somewhat different
propagation delays, and the delays will also vary with temperature, with the number
of downstream gates connected to a given gate’s output, and with details of how the
gate is manufactured. You can put a lower and upper bound on each propagation
delay, but in practice you can’t predict exactly what each delay will be.

The fact that different output bits will change at slightly different times brings us
back to the picture of a marching band rearranging itself on a football field between
successive photographs (or strobe flashes). If I wait until, say, t = 200 ns to look
at the output of the adder, then I don’t care that S0 updates before S3. Since the
slowest bit has settled to its new value 70 ns after the input changes, I can imagine
presenting a new set of inputs at t = 100 ns, t = 200 ns, t = 300 ns, etc., and
recording the output values at t = 199 ns, t = 299 ns, t = 399 ns, etc. Effectively, I
use a drum beat (or a metronome) to count off ticks of 100 ns, and at each clock tick, I
record the old outputs and then present the new inputs. This is how a synchronous
digital logic system behaves. It is how your computer behaves — which is why the
microprocessor’s clock frequency (e.g. 1 GHz) is one way to characterize how quickly
a computer helps you to get your work done.

5If you look carefully, you’ll see that this 4-bit adder has an additional input called Cin, and
you’ll see that I now call Cout what I had called S4 above. The convention is for a 4-bit adder to
have both “carry in” and “carry out” pins, so that two 4-bit adders can be connected (carry-out of
the first goes to carry-in of the second) together to make an 8-bit adder, etc.

phys364/reading12.tex page 10 of 18 2014-11-14 09:29



The device that lets you “write down the previous outputs, and present the next
inputs” once per tick of the clock is called an edge-triggered D-type flip-flop,
which is often abbreviated as D flop in speech or as DFF in writing. You can
implement a D flip-flop as shown in the figure below, though in practice a flip-flop is
not something that you build for yourself — just as you don’t normally build your
own NAND gate from transistors.

The three signals graphed (from bottom to top) in the above graph are D, clk, and Q.
The clk signal is a 1 MHz square wave. The D signal is deliberately changing at weird
times, so that it is more obvious that Q only updates immediately after a 0→ 1 clock
transition. At each 0→ 1 edge of clk, the value of the D input from immediately be-
fore the clock edge is propagated to the Q output. So Q always reflects whatever state
D had just before the most recent 0→ 1 clock transition. The effect is that even if D
updates at an imprecise time, Q will update cleanly at the clock edge. There is no need
for you to understand in detail how a DFF works; I just want you to know what it does.
But if you’re curious, you can play with an online web-based simulation of a DFF at
www.cs.washington.edu/education/courses/cse466/11au/resources/sims/e-edgedff.html

. You can also look at my CircuitLab model of a DFF at www.circuitlab.com/circuit/ywmw4t/d-flip-flop/
if you like. In essence, the DFF cleverly combines three SR latch circuits.6 7

6You can make an SR latch either with two NOR gates or with two NAND gates; the version
you see here uses NAND gates. The NOR version of an SR latch has two inputs called S and R:
you put S = 1 to set Q → 1, or you put R = 1 to reset Q → 0, or you put S,R = 0, 0 to leave Q
unchanged. The NAND version of an SR latch has two inputs called S and R: you put S = 0 to set
Q→ 1, or you put R = 0 to reset Q→ 0, or you put S,R = 1, 1 to leave Q unchanged. These inputs
are called active low because their active (asserted) state is 0, and their resting (deasserted) state is
1. In the DFF schematic, the upper SR latch controls the S input of the right-hand SR latch, and
the lower SR latch controls the R input of the right-hand SR latch. The upper and lower SR latches
are cleverly configured so that if D = 0, the right-hand latch is reset shortly after the 0 → 1 clock
transition, and if D = 1, the right-hand latch is set shortly after the 0 → 1 clock transition. The
fact that this can be done is much more interesting than the details of how it is done.

7Note to self: next time, consider using the HADES (Hamburg De-
sign System) interactive simulation framework to make a bunch of interac-
tive web applets to illustrate these logic building blocks. See for example
tams-www.informatik.uni-hamburg.de/applets/hades/webdemos/16-flipflops/20-dlatch/dff-enable.html

.

phys364/reading12.tex page 11 of 18 2014-11-14 09:29

http://www.cs.washington.edu/education/courses/cse466/11au/resources/sims/e-edgedff.html
http://www.circuitlab.com/circuit/ywmw4t/d-flip-flop/
http://tams-www.informatik.uni-hamburg.de/applets/hades/webdemos/16-flipflops/20-dlatch/dff-enable.html


Now, if we put a DFF after each of the outputs S3 . . . S0 of the 4-bit adder that
we were discussing earlier, and then we send the Q output of each of these 4 DFFs
into the inputs A3 . . . A0, and we fix the inputs B3 . . . B0 to the values 0001, we will
have a circuit that can count up by one each time the clock ticks! The figure below
shows a 4-bit counter, made by combining a 4-bit adder with 4 DFFs. Notice that

the schematic symbol for a DFF looks like this: . The D input is on the left,
and the Q output is on the right. The clk input is always drawn as a small wedge
pointing into the flip-flop.

The simulation traces above are, from bottom to top: clk, S0, S1, S2, S3, Q0, Q1, Q2,
Q3. Remember that the S outputs of the adder are connected to the D inputs of the
D-flops. Notice that the various Si do not all change simultaneously, because of the
different numbers of gate delays; sometimes the Si are even momentarily indecisive,
because it takes a finite time for each carry bit to propagate. But the Qi all change
cleanly together just after each 0 → 1 clock edge. (By the way, the 0 → 1 clock
transition is called the positive clock edge.) Notice that if we arrange for all of the
Qi to be 0 at time t = 0, then the bits Q3Q2Q1Q0 count out the sequence 00002, 00012,
00102, 00112, 01002, 01012, . . ., which in decimal is 0, 1, 2, 3, 4, 5, . . ., incrementing
once per period of the clock. If you want to tinker with this circuit, it is online at
www.circuitlab.com/circuit/qyu323/4-bit-counter/ .

By the way, if we let this counter keep running, the sequence repeats itself after 16
clock cycles: 0000, 0001, 0010, 0011, . . ., 1110, 1111, 0000, 0001, . . ., as shown in the
figure below, which graphs (from bottom to top): clk, Q0, Q1, Q2, Q3.

phys364/reading12.tex page 12 of 18 2014-11-14 09:29

http://www.circuitlab.com/circuit/qyu323/4-bit-counter/


It turns out that writing numbers out in binary gets tedious, because you have to
write so many digits. Imagine an 8-bit counter, which counts from 000000002 up to
111111112 and then wraps around. It is often convenient to write long binary numbers
out in hexadecimal (i.e. base 16), which reduces by a factor of 4 the number of digits
you need to write down. In hexadecimal, each digit can take on values 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, A, B, C, D, E, F. So an 8-bit counter goes from 0016 to FF16 and then
wraps back to 0016; a 16-bit counter goes from 000016 to FFFF16 and then wraps back
to 000016. The reason hexadecimal can be more convenient than decimal is that each
group of 4 bits maps to exactly one hexadecimal digit: you can easily convert 123416

into binary in your head, while converting 123410 into binary would require you to
write 1234 = 1024 + 128 + 64 + 16 + 2, which is a big hassle. In the C programming
language (and in Arduino programming), you put 0x in front of a number to indicate
hexadecimal. So you would write 0x1234 to mean 123416. That might explain some
of the confusing syntax you encounter during the Arduino labs. (We’ll see a different
kind of confusing syntax during the FPGA labs!)

If you didn’t already do so last weekend, please skim through pages 213–233 (sections
8.8 to 8.16) of Eggleston’s textbook, i.e. the rest of the digital chapter that you started
to read a few weeks ago. You will probably enjoy seeing analog/digital conversion
described again, now that you have worked with it. And there are a few new concepts,
such as multiplexers, demultiplexers, and memories, that I have not yet described in
these notes, though they will appear in next week’s notes.

Before we return in Lab 23 to digital logic gates, flip-flops, etc., Lab 22 will be one
final Arduino lab, in which you will program your Arduino to toggle on and off,
periodically, the flow of electric current through a small solenoid.8 This solenoid,
when energized, will attract a permanent magnet that is suspended from a spring, as
shown below. An accelerometer, attached to the permanent magnet, is read out by the
Arduino, to monitor the up-and-down motion of the permanent magnet in response to
the periodic driving force exerted by the solenoid. Zoey dreamed up this lab exercise.
I like it because it connects with physics you have learned in earlier courses, and it
lets your Arduino interact with the physical world. Also, since accelerometers are
nowadays embedded in smartphones (mainly to sense orientation) and in computer

8Zoey disassembled a bunch of doorbell mechanisms to obtain these solenoids!

phys364/reading12.tex page 13 of 18 2014-11-14 09:29



hard drives (to respond defensively to free-fall conditions!), you might want to see
how a computer communicates with such a device. Finally, it is a chance to have
your PC interactively graph some data read out by the Arduino.

To get an idea of what you’ll be doing in Lab 22, please skim through the current draft
of Zoey’s write-up: positron.hep.upenn.edu/wja/p364/2014/files/lab22.pdf .

Notice first that the accelerometer uses a serial interface to communicate with the
Arduino. What does serial mean? Imagine that you want to transmit an 8-bit binary
number, e.g. 100010012 = 13710 from one side of the room to the other. You have
a supply of placards on which the front side reads 0 and the back side reads 1.
To transmit this number in parallel, you would have eight people stand up side-by-
side and simultaneously show their placards, which would read 1,0,0,0,1,0,0,1. This
is analogous to running eight separate wires across the room, one for each bit of
the 8-bit binary number to be transmitted. To send the number serially, instead,
you would have just one person stand up, whose placard would first display 1, then
0, then 0, then 0, then 1, then 0, then 0, then finally 1, perhaps updating the
placard direction once per tick of an external clock. Timing is an important part
of serial communication, so that you can correctly distinguish 101 from 1001 from
10001, etc. So serial communication almost always makes use of a clock signal that
can be observed by both sender and receiver — i.e. it is synchronous.9 The main
advantage of serial communication is that fewer wires are needed than for parallel
communication. Morse-code telegraphy (in which only one “wire” is available) is an
early example of serial communication. The S in USB (for computer peripherals)
and in SATA (for disk drives) stands for serial. Contrast the photos below of an old
“parallel ATA” disk-drive cable, a modern “serial ATA” disk-drive cable, and a USB

9Asynchronous serial communication, such as that used by a PC’s COM port, does not use a
shared clock. Instead, it requires that both sender and receiver agree in advance on the frequency
at which bits will be transmitted (e.g. 9600 bits per second). In addition, they must agree to follow
a convention in which the sender transmits 0 when idle between messages, each message has a fixed
length (e.g. 8 bits), and each message is preceded by an additional 1 bit that serves as a start signal.

phys364/reading12.tex page 14 of 18 2014-11-14 09:29

http://positron.hep.upenn.edu/wja/p364/2014/files/lab22.pdf


cable. The serial connections use fewer wires and are more compact. In the Arduino
environment, where the total number of available input/output pins is limited, a serial
interface leaves more of your precious pins free for other uses.

The serial protocol that we will use
to read data from the accelerometer in
Lab 22 is called SPI. The SPI inter-
face uses separate clock and data lines.
The receiver samples the state of the in-
coming data bit at each rising edge of
the clock signal. Information is sent as
a sequence of bytes (8 bits per byte).
The bits in each byte are read out from
left to right (“most-significant bit (MSb)
first”), i.e. the 8-bit number b is sent
in the order b7b6b5b4b3b2b1b0. In the
figure on the right, the byte 20210 =
110010102 = 0xca (hexadecimal CA) is
transmitted serially, bit by bit, in the sequence 1,1,0,0,1,0,1,0. Notice that the vertical
dashed green lines in the figure indicate where each bit of the byte is sampled.

To allow for bidirectional data flow,
SPI uses two data lines — MOSI
(master out, slave in), and MISO
(master in, slave out). One of
the two sides (called the master)
provides the clock signal (actually
called SCK (serial clock)) and initi-
ates the communication. The slave
responds to commands sent by the
master. (I usually prefer to say
“target” rather than “slave,” but
the SPI nomenclature is “slave.”
Some authors have switched to us-
ing “leader” and “follower.”) In our
case, the Arduino will be the mas-
ter, providing the serial clock and initiating commands to which the accelerometer

phys364/reading12.tex page 15 of 18 2014-11-14 09:29



responds. So MOSI carries data from Arduino to accelerometer, while MISO carries
data back from accelerometer to Arduino. In the above-right figure, the master sends
out the byte 110010102 = 202, and the target responds with the byte 011000102 = 98.

An SPI interface normally consists of four distinct wires, not three. The fourth wire,
called SS (target select), is also controlled by the master (i.e. the Arduino). It tells
the target to wake up and get ready to receive and process a new command from
the master. The SS line rests in the HIGH state between commands. Each new
command to the target begins by setting the SS signal LOW, where it stays until
the command is completed. An example command would be, “Send me the present
value of the z component of acceleration.”

The figure above is an oscilloscope screenshot of the Arduino sending a sequence of
three bytes to the accelerometer. The blue trace is SS, the red trace is SCK, and
the green trace is MOSI. There is no response here, so MISO is not shown. See if
you can figure out the three bytes that are sent, by looking at the value of the green
data line at the times when the red clock line goes from LOW to HIGH. Here’s a
hint: Laboratory Electronics.

For more information on SPI, you can look here (from which I took the SPI figures):
learn.sparkfun.com/tutorials/serial-peripheral-interface-spi . Beware
that their SPI description reverses the order in which the bits of each byte are trans-
mitted.10

10Some SPI devices use LSb-first ordering, but as far as I can tell, it is much more common to use
MSb-first, as our accelerometer does. The Arduino is capable of handling either convention.

phys364/reading12.tex page 16 of 18 2014-11-14 09:29

http://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi


The accelerometer in Lab 22 will be the ADXL345, whose data sheet is at
www.analog.com/static/imported-files/data sheets/ADXL345.pdf . Below is
a snippet of the manufacturer’s description of what this accelerometer does. The
resolution “3.9 mg/LSB” means that the digitized acceleration changes by one count
(one “least-significant bit”) when the acceleration changes by 0.0039× 9.8 m/s2.

In order to graph (and perhaps analyze) accelerometer data collected by the Arduino,
we will need to write some short programs that run on the laptop PC. The Arduino
will send out data with the usual Serial.println() function, but instead of simply
displaying these messages as printed text, the PC program will interpret these mes-
sages as data to be graphed on the PC’s screen. Zoey will provide a program that
does 90% of this job for you; you will just need to fill in the missing 10% to get it
working (with as much help from us as you like).

The programming language we will use on the laptop for graphing, etc., is called
Processing. It is a very simplified version of Java, with a programming environment
that looks just like that of the Arduino. In fact, the Arduino platform is derived
from the Processing platform. Both were created with the aim of putting technology
into the hands of artists and visual designers. The Processing-based parts of Lab 22
will go more quickly for you if you have had a chance to try out Processing at home
first. Especially if you prefer to work on your own laptop computer rather than one
of the lab’s laptops, you should download the Processing programming environment
and write the basic “Hello mouse” program on your machine, by following this link:
processing.org/tutorials/overview/

If you do manage to install Processing on your machine, try out this short sketch that

phys364/reading12.tex page 17 of 18 2014-11-14 09:29

http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf
https://processing.org/tutorials/overview/


I wrote for the students in Physics 008 (Physics for Architects) last year. I’ll bet you
can guess without even running it what it is going to do! What is amazing about
Processing is that you can make pretty decent animations with minimal coding effort.

void setup() {

size(900, 450);

}

void draw() {

float t = 0.01*frameCount;

float xsun = 0.5*width;

float ysun = 0.5*height;

// clear screen before each new frame

background(128);

// draw sun

ellipse(xsun, ysun, 20, 20);

float rplanet = 200;

float xplanet = xsun + rplanet*cos(t);

float yplanet = ysun + rplanet*sin(t);

// draw planet

ellipse(xplanet, yplanet, 10, 10);

float rmoon = 30;

float xmoon = xplanet + rmoon*cos(t*365/27.3);

float ymoon = yplanet + rmoon*sin(t*365/27.3);

// draw moon

ellipse(xmoon, ymoon, 5, 5);

}

If you prefer not to bother installing Processing on your own machine, you can learn
a bit of Processing in this one-hour-long video lesson, in which you can type your very
first short Processing programs into your web browser, with no software installation
at all: hello.processing.org

If you do manage to try out Processing this weekend, you can earn 10% extra credit
on this week’s reading by sending me (along with your answers to the usual reading
questions) the source code for whatever sketch you decided to write in Processing. If
possible, send it in a form that I can easily copy and paste into my own Processing
sketch editor, in case I want to try it out.

Completely optional: if you’re interested in a textbook-level introduction to the gen-
eral topic of feedback and control systems, you can skim Chapter 1 of this book:
www.cds.caltech.edu/~murray/books/AM05/pdf/am08-complete 30Aug11.pdf

(Zoey found this online.) The book also includes a chapter on PID controllers (Chap-
ter 10), in case Lab 16 left you eager to learn more. If you do decide to read Chapter 1,
you can earn 10% extra credit on this week’s reading by writing a couple of sentences
to tell me about something that you found interesting from the chapter.

phys364/reading12.tex page 18 of 18 2014-11-14 09:29

http://hello.processing.org/
http://www.cds.caltech.edu/~murray/books/AM05/pdf/am08-complete_30Aug11.pdf

