
Physics 364, Fall 2014, reading due 2014-11-23.
Email your answers to ashmansk@hep.upenn.edu by 11pm on Sunday

Course materials and schedule are at positron.hep.upenn.edu/p364

Assignment: (a) First read this week’s notes, starting on the next page. (b) Then
email me your answers to the questions below.

1. If I write the Verilog statement wire [5:0] a = 37; what are the resulting
values of a[5], a[4], a[3], a[2], a[1], and a[0] ?

2. If I write the Verilog statement wire [5:0] a = ((2+2==5) ? 37 : 13); what
is the resulting value of a ?

3. What does this Verilog module do?

module mystery (output o, input a, input b);

assign o = !(a && b);

endmodule

4. Is there anything from this reading assignment that you found confusing and would
like me to try to clarify? If you didn’t find anything confusing, what topic did you
find most interesting?

5. How much time did it take you to complete this assignment?

phys364/reading13.tex page 1 of 15 2014-11-20 10:40

http://positron.hep.upenn.edu/p364

In Lab 24, we will start working with FPGAs (Field Programable Gate Arrays),
which in our case are manufactured by a company called Xilinx. FPGAs will let us
wire up large numbers of logic gates, flip flops, etc., without having to run physical
wires on a breadboard. (I think that after wiring up the four-bit adder in Lab 23,
you can appreciate how much effort this saves!) The “wires” are all internal to the
FPGA chip itself. There are two ways to tell the Xilinx software what you want your
FPGA to do: the first way is to draw a schematic diagram by pointing and clicking
on your computer screen; the second way is to write programs, in a language called
Verilog, that represent the desired logic. In these notes and in the upcoming labs,
you will see some short Verilog programs that demonstrate a few of the things you can
do with logic gates, flip-flops, adders, counters, etc. In many cases, I will show you
the schematic diagram that corresponds to the Verilog program, so that you can see
that a Verilog program is really just an alternative way of representing a schematic
diagram for digital logic.

By the way, remember that we will not have class on the Wednesday before Thanks-
giving. But there will be another set of my notes for you to read over the Thanksgiving
weekend, to serve as background material for Labs 25 and 26. Also, my plan is to
give you a week to work on the take-home final exam, e.g. to put it online Dec 8 or
9 and to have it due on Dec 15 or so.

One key goal of the next four labs will be to try to fill in as much as possible of
the conceptual gap between basic logic gates (things you know how to build out of
Field Effect Transistors) and a simplified computer (vaguely along the lines of an
Arduino). It quickly becomes impractical to wire up anything larger than about a

dozen logic gates out of chips that look like this: . So we’re
instead using Field Programmable Gate Arrays1 (FPGAs) so that all of the little
logic gates and wires can be connected for us automatically inside a little chip that

looks like this: . To use an FPGA, you describe the logic that you want
to implement, in a form that is isomorphic to a schematic diagram, and the FPGA
compiler then figures out how to fit that logic into your chosen FPGA. While it is
possible to provide this logic description by literally drawing a schematic diagram
from within the FPGA software, hand-drawn wires can quickly become just as messy
as wires on a breadboard, so it turns out to be much more convenient to describe
your circuit in a text-based computer language called Verilog.2

Verilog has a C-like syntax, so if you are already familiar with other programming
languages that use C-like syntax (the Arduino language, C, Java, Python, etc.), then
much of the syntax will look natural to you. Strictly speaking, only a subset of

1http://en.wikipedia.org/wiki/Field-programmable_gate_array#Architecture
2http://en.wikipedia.org/wiki/Verilog

phys364/reading13.tex page 2 of 15 2014-11-20 10:40

http://en.wikipedia.org/wiki/Field-programmable_gate_array#Architecture
http://en.wikipedia.org/wiki/Verilog

possible Verilog programs are isomorphic to schematic diagrams. We are using the
synthesizable subset of the Verilog language, which is used to describe the logic
gates, wires, etc. that you want the FPGA to implement in its little transistors.
(The same synthesizable subset of Verilog is also used to design integrated circuits,
e.g. if you want to design your own Pentium processor.) Another major use of
the Verilog language is to make simulation programs that exercise the features of
a hypothetical digital circuit before you manufacture it. (For example, you want
to mimic the external behavior of all of the input/output pins of your hypothetical
successor of the Pentium processor.) Verilog simulation programs can do things that
go far beyond simply representing what is connected to what: they can read and
write data files, print out warning messages, and make elaborate computations. In
this course, I will only describe the features of the language that the FPGA compiler
knows how to convert into logic gates, flip-flops, and their interconnecting wires. If in
the future you use FPGAs in a large project, you will probably also need to learn how
to use the simulation features of Verilog, so that you can debug your circuit before
you load it into your real FPGA.

Before getting into the specifics of Verilog, let’s spell out the FPGA hardware and
software that we’re using in the lab. Our FPGA manufacturer is Xilinx, Inc..3

Xilinx makes many different FPGA models. The family of Xilinx FPGA we are
using is called Spartan-3E, and the specific model is XC3S100E. (Some families
are newer than other families, have more bells and whistles to aid in complicated
designs, operate faster, consume less power, etc. Specific models within a family
vary mainly in size: the number of logic gates they can internally implement. The
XC3S100E is the smallest member of the Spartan-3E family, containing the equivalent
of about 100,000 logic gates. The largest Spartan-3E FPGAs contain nearly 2 million
logic gates, and newer FPGA families from Xilinx contain even larger FPGAs.) The
physical package in which our FPGA is housed is called CP132, which indicates 132
ball-shaped pins arranged in a rectangular lattice beneath the chip, to connect the
chip to the printed circuit board. This FPGA comes in two different speed grades,
called “−4” and “−5.” Our chip is of speed grade − 4, which is the slower of the
two grades. So again, the FPGA is Spartan-3E / XC3S100E / CP132 / −4. The
Spartan-3E family dates from about 2005 and is no longer used in new circuit designs,
but the key ideas are the same as in newer FPGAs.

The FPGA is mounted on a printed circuit board (PCB) manufactured by Digilent,
Inc.,4 called the BASYS2 board.5 The BASYS2 board makes the FPGA more usable
by providing a USB connection to a PC to supply power and to permit new programs
to be loaded, providing LEDs, switches, and push buttons, etc.

The software that compiles your Verilog design into the long sequence of ones and

3http://www.xilinx.com
4http://digilentinc.com
5http://www.digilentinc.com/Products/Detail.cfm?Prod=BASYS2

phys364/reading13.tex page 3 of 15 2014-11-20 10:40

http://www.xilinx.com
http://digilentinc.com
http://www.digilentinc.com/Products/Detail.cfm?Prod=BASYS2

zeros that tells the FPGA what to do is called Xilinx ISE Project Navigator,
version 14.7, by Xilinx, Inc. The output of the Xilinx ISE software is a file named
projectName.bit . The *.bit file is then programmed into your FPGA using a USB
cable. This programming of the *.bit file into the FPGA can be done directly from
the Xilinx ISE software or via Digilent-supplied program called Digilent ADEPT.
The ADEPT software is easy to use and has a simpler user interface, so my preference
is to use ADEPT to load the *.bit file into the board. In any case, keep in mind
that we will need to open both the Xilinx ISE Project Navigator application and the
Digilent ADEPT application to work with the BASYS2 board. Xilinx calls the *.bit
file the programming file. So the operation to re-make the *.bit file in ISE is called
generate programming file.

More specific instructions for using the ISE and ADEPT software can be found inside
lab24.pdf, the instructions for Lab 24.

The basic unit of a Verilog program is a module. A module represents a type of
component of your circuit. For example, you may want to describe a 4-bit adder in
terms of logic gates. This description necessarily contains a list of input and output
pins as well as the set of gates and wires that make up the adder’s functionality. Here
is the CircuitLab schematic diagram for the 4-bit adder that we have seen before:

The adder’s inputs are A3, A2, A1, A0 (a 4-bit number), B3, B2, B1, B0 (another
4-bit number), and Cin (a carry bit). The adder’s outputs are S3, S2, S1, S0 (a 4-bit
sum: S = A + B) and Cout (a carry bit). We can represent this schematic diagram
directly in Verilog like this:

phys364/reading13.tex page 4 of 15 2014-11-20 10:40

module add4bit (output s3, output s2, output s1, output s0,

output cout,

input a3, input a2, input a1, input a0,

input b3, input b2, input b1, input b0, input cin);

// define wires for outputs of intermediate xor/and/or gates

wire oxor1, oand1, oand2, c0;

// instantiate gates for bit 0 of adder

xor xor1 (oxor1, a0, b0);

xor xor2 (s0, oxor1, cin);

and and1 (oand1, cin, oxor1);

and and2 (oand2, a0, b0);

or or1 (c0, oand1, oand2);

// define wires & instantiate gates for bit 1 of adder

wire oxor3, oand3, oand4, c1;

xor xor3 (oxor3, a1, b1);

xor xor4 (s1, oxor3, c0);

and and3 (oand3, c0, oxor3);

and and4 (oand4, a1, b1);

or or2 (c1, oand3, oand4);

// define wires & instantiate gates for bit 2 of adder

wire oxor5, oand5, oand6, c2;

xor xor5 (oxor5, a2, b2);

xor xor6 (s2, oxor5, c1);

and and5 (oand5, c1, oxor5);

and and6 (oand6, a2, b2);

or or3 (c2, oand5, oand6);

// define wires & instantiate gates for bit 3 of adder

wire oxor7, oand7, oand8;

xor xor7 (oxor7, a3, b3);

xor xor8 (s3, oxor7, c2);

and and7 (oand7, c2, oxor7);

and and8 (oand8, a3, b3);

or or4 (cout, oand7, oand8);

endmodule

On both the schematic diagram and in the Verilog program, every gate is given a
name: the eight XOR gates are called xor1 . . . xor8, etc. Notice also that we had
to give every wire a name in Verilog, whereas on the schematic diagram most wires
that represent intermediate results are left unnamed. For instance, I used oxor1 as
the name for the wire coming out of gate xor1. A wire in Verilog plays the same role
as a wire on the schematic diagram: for instance, the wire c0 connects the output of

phys364/reading13.tex page 5 of 15 2014-11-20 10:40

OR gate or1 to the second input of XOR gate xor4 and to the first input of AND
gate AND3.

The statement wire oxor1, oand1, oand2, c0; means, “Create wires whose names
are oxor1, oand1, oand2, and c0. I will tell you later what is connected to them.”
The statement xor xor3 (oxor3, a1, b1); means, “Create an xor whose name
is xor3; connect its output to the wire named oxor3; and connect its inputs to the
wires named a1 and b1.” How does Verilog know what an xor is? It turns out that
Verilog has built-in logic gates and, or, xor, nand, nor, xnor, each of which has one
output (the first argument) and 2 or more inputs (the second, third, etc., arguments).

If we didn’t want to use Verilog’s built-in xor, and, and or gates, we could have
defined our own modules e.g. called xorgate, andgate, and orgate, like this:

module andgate (output o, input a, input b);

assign o = a & b;

endmodule;

module orgate (output o, input a, input b);

assign o = a | b;

endmodule;

module xorgate (output o, input a, input b);

assign o = a ^ b;

endmodule;

Then the lines for bit 0 of the adder would have looked like this instead:

// instantiate gates for bit 0 of adder

xorgate xor1 (oxor1, a0, b0);

xorgate xor2 (s0, oxor1, cin);

andgate and1 (oand1, cin, oxor1);

andgate and2 (oand2, a0, b0);

orgate or1 (c0, oand1, oand2);

The lines from module andgate to endmodule provide Verilog with a definition of
what I mean by an andgate. The line andgate and1 (oand1, cin, oxor1); then
asks Verilog to create an andgate with a given name (“and1”) and with given connec-
tions to output and input wires. (Its output should be connected to the wire called
“oand1,” and its inputs should be connected to the wires called “cin” and “oxor1.”)

phys364/reading13.tex page 6 of 15 2014-11-20 10:40

By analogy, the lines from module add4bit to endmodule up above defined what
I mean by an add4bit. Now if I want to make an 8-bit adder, I can simply combine
two 4-bit adders. Here is how I would do that on a schematic. First I would put my
4-bit adder into a little box like this (which is equivalent to the Verilog line
module add4bit (output s3, ..., input cin);):

Then I would connect two instances of add4bit together to make a new module called
add8bit, which implements an 8-bit adder. Shown below is the way I would draw
that on a schematic diagram. There are inputs A7 . . . A0, B7 . . . B0, and Cin, and
outputs S7 . . . S0 and Cout. One of the instances of add4bit is named myadd4bit1

and the other is named myadd4bit2. The Cout of the first adder is wired to the Cin

of the second adder.

Shown below is the Verilog code that is isomorphic to the above schematic diagram.
We create two instances of add4bit, which are named myadd4bit1 and myadd4bit2.
We connect the low 4 bits of A, B, and S to the first adder and the high 4 bits to the
second adder. The wire named carry connects the cout output of the first adder to
the cin input of the second adder.

phys364/reading13.tex page 7 of 15 2014-11-20 10:40

module add8bit (output s7, output s6, output s5, output s4,

output s3, output s2, output s1, output s0,

output cout,

input a7, input a6, input a5, input a4,

input a3, input a2, input a1, input a0,

input cin);

wire carry; // connects cout of 1st adder to cin of 2nd adder

add4bit myadd4bit1 (s3, s2, s1, s0, carry,

a3, a2, a1, a0, b3, b2, b1, b0, cin);

add4bit myadd4bit2 (s7, s6, s5, s4, cout,

a7, a6, a5, a4, b7, b6, b5, b4, carry);

endmodule

First we told Verilog how to make an andgate, an orgate, and an xorgate. Then we
told Verilog how to instantiate and connect several instances of those three modules
to make an add4bit. Then we told Verilog how to instantiate and connect two
instances of add4bit modules to define a new module called add8bit. I hope you see
that writing Verilog code in this way is analogous to drawing a schematic diagram.

If you had typed in by hand the above definition of the add8bit module, you might
have asked yourself whether Verilog has a more concise way to write all of those
separate bits of S, A, and B. And as a matter of fact, Verilog does have a concise
notation for groups of many wires that travel together and are indexed by an integer.
In Verilog, such a group is called a vector. (In electronics, a group of several wires
that travel together is often called a bus. But in Verilog the name is vector. By the
way, the thing that Verilog calls a wire is sometimes referred to as a net in Computer-
Aided Design systems; but we’ll follow Verilog and call it a wire.) We can replace the
eight individual wires s7. . .s0 with a single vector s[7:0], like this:

module add8bit (output [7:0] s, output cout,

input [7:0] a, input [7:0] b, input cin);

wire carry;

add4bit myadd4bit1 (s[3], s[2], s[1], s[0], carry,

a[3], a[2], a[1], a[0],

b[3], b[2], b[1], b[0], cin);

add4bit myadd4bit2 (s[7], s[6], s[5], s[4], cout,

a[7], a[6], a[5], a[4],

b[7], b[6], b[5], b[4], carry);

endmodule

Now, if we rewrite the add4bit module to use vectors for its inputs and outputs, we
can make add8bit look even nicer. Here is the rewritten add4bit module:

phys364/reading13.tex page 8 of 15 2014-11-20 10:40

module add4bit (output [3:0] s, output cout,

input [3:0] a, input [3:0] b, input cin);

// define wires for outputs of intermediate xor/and/or gates

wire oxor1, oand1, oand2, c0;

// instantiate gates for bit 0 of adder

xor xor1 (oxor1, a[0], b[0]);

xor xor2 (s[0], oxor1, cin);

and and1 (oand1, cin, oxor1);

and and2 (oand2, a[0], b[0]);

or or1 (c0, oand1, oand2);

// define wires & instantiate gates for bit 1 of adder

wire oxor3, oand3, oand4, c1;

xor xor3 (oxor3, a[1], b[1]);

xor xor4 (s[1], oxor3, c0);

and and3 (oand3, c0, oxor3);

and and4 (oand4, a[1], b[1]);

or or2 (c1, oand3, oand4);

// define wires & instantiate gates for bit 2 of adder

wire oxor5, oand5, oand6, c2;

xor xor5 (oxor5, a[2], b[2]);

xor xor6 (s[2], oxor5, c1);

and and5 (oand5, c1, oxor5);

and and6 (oand6, a[2], b[2]);

or or3 (c2, oand5, oand6);

// define wires & instantiate gates for bit 3 of adder

wire oxor7, oand7, oand8;

xor xor7 (oxor7, a[3], b[3]);

xor xor8 (s[3], oxor7, c2);

and and7 (oand7, c2, oxor7);

and and8 (oand8, a[3], b[3]);

or or4 (cout, oand7, oand8);

endmodule

Using this rewritten add4bit, here is the simplified add8bit:

module add8bit (output [7:0] s, output cout,

input [7:0] a, input [7:0] b, input cin);

wire carry;

add4bit myadd4bit1 (s[3:0], carry, a[3:0], b[3:0], cin);

add4bit myadd4bit2 (s[7:4], cout, a[7:4], b[7:4], carry);

endmodule

The vector s is eight bits wide. Notice that I can select only the lower four bits of s

phys364/reading13.tex page 9 of 15 2014-11-20 10:40

by writing s[3:0], and I can select only the upper four bits of s by writing s[7:4]. I
can pick out a single bit (e.g. bit 3) of the vector s by writing s[3]. So the expression
s[3] behaves like a wire, and the expression s[3:0] behaves like a 4-bit vector. The
expression s (or equivalently the expression s[7:0]) behaves like an 8-bit vector.

Meanwhile, using the C-like operators for the AND (&), OR (|), and XOR (^)
operations, we can simplify the add4bit module even further (though this so far isn’t
much of a simplification):

module add4bit (output [3:0] s, output cout,

input [3:0] a, input [3:0] b, input cin);

// define wires for outputs of intermediate xor/and/or gates

wire oxor1, oand1, oand2, c0;

// instantiate gates for bit 0 of adder

assign oxor1 = a[0] ^ b[0];

assign s[0] = oxor1 ^ cin;

assign oand1 = cin & oxor1;

assign oand2 = a[0] & b[0];

assign c0 = oand1 | oand2;

// define wires & instantiate gates for bit 1 of adder

wire oxor3, oand3, oand4, c1;

assign oxor3 = a[1] ^ b[1];

assign s[1] = oxor3 ^ c0;

assign oand3 = c0 & oxor3;

assign oand4 = a[1] & b[1];

assign c1 = oand3 | oand4;

// define wires & instantiate gates for bit 2 of adder

wire oxor5, oand5, oand6, c2;

assign oxor5 = a[2] ^ b[2];

assign s[2] = oxor5 ^ c1;

assign oand5 = c1 & oxor5;

assign oand6 = a[2] & b[2];

assign c2 = oand5 | oand6;

// define wires & instantiate gates for bit 3 of adder

wire oxor7, oand7, oand8;

assign oxor7 = a[3] ^ b[3];

assign s[3] = oxor7 ^ c2;

assign oand7 = c2 & oxor7;

assign oand8 = a[3] & b[3];

assign cout = oand7 | oand8;

endmodule

We introduced two new Verilog features in this last step. First, we used the C-like
operators &, |, and ^ for the AND, OR, and XOR operations. Second, we used the

phys364/reading13.tex page 10 of 15 2014-11-20 10:40

Verilog assign statement to connect a wire (on the left-hand side of the = sign) to
an expression (on the right-hand side). Now here’s one more Verilog feature: we can
combine the wire declaration and the assign statement into a single statement:

module add4bit (output [3:0] s, output cout,

input [3:0] a, input [3:0] b, input cin);

// instantiate gates for bit 0 of adder

wire oxor1 = a[0] ^ b[0];

assign s[0] = oxor1 ^ cin;

wire oand1 = cin & oxor1;

wire oand2 = a[0] & b[0];

wire c0 = oand1 | oand2;

// define wires & instantiate gates for bit 1 of adder

wire oxor3 = a[1] ^ b[1];

assign s[1] = oxor3 ^ c0;

wire oand3 = c0 & oxor3;

wire oand4 = a[1] & b[1];

wire c1 = oand3 | oand4;

// define wires & instantiate gates for bit 2 of adder

wire oxor5 = a[2] ^ b[2];

assign s[2] = oxor5 ^ c1;

wire oand5 = c1 & oxor5;

wire oand6 = a[2] & b[2];

wire c2 = oand5 | oand6;

// define wires & instantiate gates for bit 3 of adder

wire oxor7 = a[3] ^ b[3];

assign s[3] = oxor7 ^ c2;

wire oand7 = c2 & oxor7;

wire oand8 = a[3] & b[3];

assign cout = oand7 | oand8;

endmodule

If we use the C-like logical operators, we can avoid creating so many intermediate
wire names. So we can rewrite the add4bit module in this much shorter form:

module add4bit (output [3:0] s, output cout,

input [3:0] a, input [3:0] b, input cin);

assign s[0] = a[0] ^ b[0] ^ cin;

wire c0 = (a[0] & b[0]) | (a[0] & cin) | (b[0] & cin);

assign s[1] = a[1] ^ b[1] ^ c0;

wire c1 = (a[1] & b[1]) | (a[1] & c0) | (b[1] & c0);

assign s[2] = a[2] ^ b[2] ^ c1;

phys364/reading13.tex page 11 of 15 2014-11-20 10:40

wire c2 = (a[2] & b[2]) | (a[2] & c1) | (b[2] & c1);

assign s[3] = a[3] ^ b[3] ^ c2;

assign cout = (a[3] & b[3]) | (a[3] & c2) | (b[3] & c2);

endmodule

It seems a bit annoying to have to write such similar equations four separate times.
Maybe there is a way to combine them, taking advantage of the fact that s, a, and
b are Verilog vectors? In fact there is, using two tricks. The first trick is the Verilog
concatenation operator, which is expressed using {} curly braces. If you stick n
wires side-by-side inside a set of curly braces, the resulting expression behaves like
an n-bit vector. You can also concatenate a mixture of wires and vectors, with the
resulting expression having a width (number of bits) that is the sum of the widths of
the individual wires and vectors. So if I have wires named c2, c1, c0, cin, then the
expression {c2,c1,c0,cin} behaves like a 4-bit vector. In other words, the expression
{s[3],s[2],s[1],s[0]} behaves like the expression s[3:0]. The second trick is the
fact that you can apply the C-like operators &, |, and ^ to vectors, with the result
that the AND, OR, or XOR operation is performed bit-by-bit on each vector. So a
statement like assign o[3:0] = a[3:0] & b[3:0]; has exactly the same effect as
the four separate statements

assign o[3] = a[3] & b[3]; assign o[2] = a[2] & b[2];

assign o[1] = a[1] & b[1]; assign o[0] = a[0] & b[0];

So we can make the add4bit module even more concise by using the power of Verilog
bit-vector operations. (Make sure you followed that last paragraph, by carefully
studying this next example.)

module add4bit (output [3:0] s, output cout,

input [3:0] a, input [3:0] b, input cin);

wire c0, c1, c2;

wire [3:0] k = {c2, c1, c0, cin};

assign s[3:0] = a[3:0] ^ b[3:0] ^ k[3:0];

assign {cout,k[3:1]} =

(a[3:0] & b[3:0]) | (a[3:0] & k[3:0]) | (b[3:0] & k[3:0]);

endmodule

The last statement above is equivalent to the four statements (in any order):
assign k[1] = (a[0] & b[0]) | (a[0] & k[0]) | b[0] & k[0]);

assign k[2] = (a[1] & b[1]) | (a[1] & k[1]) | b[1] & k[1]);

assign k[3] = (a[2] & b[2]) | (a[2] & k[2]) | b[2] & k[2]);

assign cout = (a[3] & b[3]) | (a[3] & k[3]) | b[3] & k[3]);

Notice that k[3] is the same as c2, etc.

We could be even more concise by noticing that since the vector a is only 4 bits wide,
we can simply write a instead of going to the trouble of writing a[3:0]. This is

phys364/reading13.tex page 12 of 15 2014-11-20 10:40

certainly more concise, but it is up to you to decide whether it is more or less clear.
Sometimes it is helpful to make it obvious that you are manipulating a bit vector,
rather than a wire, by writing the longer expression a[3:0] when you could just write
a. In any case, here is the more concise version:

module add4bit (output [3:0] s, output cout,

input [3:0] a, input [3:0] b, input cin);

wire c0, c1, c2;

wire [3:0] k = {c2,c1,c0,cin};

assign s = a ^ b ^ k;

assign {cout,k[3:1]} = (a & b) | (a & k) | (b & k);

endmodule

Now let me show you something that almost looks like cheating. It turns out that
Verilog knows how to do addition: it understands how to convert the addition of
two integers (represented as bit vectors) into the corresponding collection of logic
gates. So in fact there was no need (except for pedagogical reasons) for us to spell
out the module add4bit with individual logical operations. We can in fact re-write
the add4bit module in this unbelievably simple form:

module add4bit (output [3:0] s, output cout,

input [3:0] a, input [3:0] b, input cin);

assign {cout,s} = a + b + cin;

endmodule

Each of the expressions a, b, and s is four bits wide. Each of the expressions cin and
cout is only a single bit wide. The expression {cout,s} is five bits wide. The largest
possible value for a + b + cin is (in decimal) 15 + 15 + 1 = 31, which just fits into
five bits. Keep in mind that when the Xilinx Verilog compiler sees this last version
of add4bit, it will be smart enough to expand it into the equivalent combination of
logic gates, as we had previously done by hand.

Here’s another bit-vector trick that you might find helpful: you can assign an integer
constant to a bit vector. And that constant can be expressed in decimal (base 10),
in binary (base 2), or in hexadecimal (base 16). So I can write (equivalently)

wire [7:0] anote = 220;

wire [7:0] anote = ’b11011100;

wire [7:0] anote = ’hdc;

and the result in all three cases is that bits 7, 6, 4, 3, and 2 of anote will be HIGH
and bits 5, 1, and 0 of anote will be LOW. That’s 22010 = 110111002 = DC16. (I
called it anote for the frequency in Hz of the musical A note below middle C.)

phys364/reading13.tex page 13 of 15 2014-11-20 10:40

In many programming languages (in Verilog, as well as in C, Python, Java, etc.),
there are two forms of the AND, OR, NOT, etc., operations: one version (“bitwise”)
that operates bit-by-bit, treating each bit separately as TRUE (1) or FALSE (0), and
another version (“logical”) that treats an entire expresssion as TRUE (nonzero) or
FALSE (zero). For example, the bit-wise NOT operator is ~ , while the logical
NOT operator is ! . For the logical operators, any non-zero expression is considered
TRUE, while a zero is considered FALSE. The result of a logical operator is a single
bit: 1 for TRUE and 0 for FALSE. This is probably most easily illustrated with a
table. Suppose that A and B are both 4-bit vectors. For example,

wire [3:0] A; wire [3:0] B;

Let’s look at the result of applying various bitwise and logical operators to A and B,
and putting the result into another 4-bit vector C. For instance, the A&B column is the
result of wire [3:0] C = A&B; . The operators are ~ (bit-wise NOT), ! (logical
NOT), & (bit-wise AND), && (logical AND), | (bit-wise OR), || (logical OR), and ^

(bit-wise XOR). (There is no logical XOR operator.) All of these operators work the
same way in Verilog as in Arduino, C, Python, Java, Processing, etc.

A B ~B !B A&B A&&B A|B A||B A^B

0 0 15 1 0 0 0 0 0
0 1 14 0 0 0 1 1 1
0 2 13 0 0 0 2 1 2
1 1 14 0 1 1 1 1 0
1 2 13 0 0 1 3 1 3
2 2 13 0 2 1 2 1 0

Here is the same table in binary. (The previous table was in decimal.)

A B ~B !B A&B A&&B A|B A||B A^B

0000 0000 1111 0001 0000 0000 0000 0000 0000
0000 0001 1110 0000 0000 0000 0001 0001 0001
0000 0010 1101 0000 0000 0000 0010 0001 0010
0001 0001 1110 0000 0001 0001 0001 0001 0000
0001 0010 1101 0000 0000 0001 0011 0001 0011
0010 0010 1101 0000 0010 0001 0010 0001 0000

Also, the expression A==B evaluates to 1 if A and B are equal; otherwise, it evaluates
to 0. The expresssion A!=B evaluates to 1 if A and B are not equal; otherwise,
it evaluates to 0. A mysterious operator called the ternary operator (because it
has three operands) is remarkably useful in Verilog (and in C and Java, but not in
Python). The expression Q ? B : A evaluates to B if Q is nonzero and evaluates
to A if Q is zero. This allows you to select between two different values, depending on
whether or not some condition Q is satisfied. We will see examples of this in several
of the upcoming labs. The logic-gate equivalent of the ternary operator is called a
multiplexer: it uses a select signal (called S0 in the diagram below) to choose

phys364/reading13.tex page 14 of 15 2014-11-20 10:40

which of two inputs (called A and B in the diagram) is assigned to the output (called
Z in the diagram). The diagram below performs the same function as the following
Verilog module:

module multiplexer (output Z, input S, input A, input B);

assign Z = (S ? B : A);

endmodule

There was a brief description of multiplexers in Chapter 8 of Eggleston’s book. There
is also a Wikipedia description at
http://en.wikipedia.org/wiki/Multiplexer#Digital_multiplexers

which I think is worth reading, because we will use digital multiplexers many times
in the FPGA labs, as a way of selecting among several alternative inputs.

I think that’s enough Verilog for you to digest in one sitting. I hope that it helps you
to make more sense of Lab 24. I plan to give you some places in the FPGA labs in
which you need to fill in a few lines of your own Verilog code within a mostly-finished
skeleton that I provide.

phys364/reading13.tex page 15 of 15 2014-11-20 10:40

http://en.wikipedia.org/wiki/Multiplexer#Digital_multiplexers

