
Physics 364, Fall 2014, reading due 2014-11-30.
Email your answers to ashmansk@hep.upenn.edu by 11pm on Sunday

Course materials and schedule are at positron.hep.upenn.edu/p364

Assignment: (a) First read this week’s notes, starting on the next page. (b) Then
email me your answers to the questions below.

1. What are the inputs and outputs of a digital multiplexer called? (There are several
possible correct answers.) What does a multiplexer do?

2. What is a ROM? What does it do? What are its inputs and outputs? Why was
it important for us to talk about multiplexers before we introduced ROMs?

3. What is a state machine? What handy things can you do with a state machine?

4. Is there anything from this reading assignment that you found confusing and would
like me to try to clarify? If you didn’t find anything confusing, what topic did you
find most interesting?

5. How much time did it take you to complete this assignment?

phys364/reading14.tex page 1 of 21 2014-12-01 10:45

http://positron.hep.upenn.edu/p364

In last week’s reading, we saw how the Verilog language, whose syntax is similar to
that of C, Java, Arduino, etc., can be used to write down descriptions of digital circuits
that would be rather tedious to draw as schematic diagrams, and would be absurdly
tedious to wire up on a breadboard. These Verilog-based circuit descriptions can, in
turn, be transformed by the Xilinx compiler into the internal wiring of an FPGA.
Using an FPGA allows us to build digital circuits containing many thousands of logic
gates and flip-flops, without having to wire them up by hand on a breadboard.

Last week’s Lab 24 mainly illustrated FPGA-based analogues of the digital circuits
that you built up from discrete digital components in Lab 23 and earlier in Lab 19.
One snippet of Verilog that appeared in Lab 24 without first having appeared in
these notes (oops!) was the Verilog idiom for creating a D-type flip-flop (which is
often called a dff):

1 // Verilog idiom for D-type flip-flop

2 module dff (output q, input clk, input d);

3 reg q_reg;

4 always @ (posedge clk) q_reg <= d;

5 assign q = q_reg;

6 endmodule

In this course, you can treat the above snippet of Verilog as a recipe without learning
the Verilog subtleties of “reg” vs “wire.” But if you’re curious, a wire in Verilog
merely interconnects two points in a circuit, like a physical wire on your breadboard.
A wire has no memory of anything that happened in the past. A wire connects the
output of one part of your circuit to the input(s) of one or more other parts of your
circuit. Whether the state of a wire is 0 or 1 depends only on the present output
of the “upstream” part of your circuit, and not on past outputs. (Unlike a physical
wire, a Verilog wire has no capacitance.) By contrast, a Verlog reg has an internal
state that depends on past events, so it is analogous to a latch or a flip-flop. A reg

is something like a single-bit version of the variables seen in ordinary programming
languages, whereas a wire is just a name used to connect inputs of some things to
outputs of other things. The line always @ (posdege clk) q_reg <= d means that
every time there is a “positive” (LOW to HIGH) edge on the clock signal, the reg

called q_reg should be updated from whatever value is present on the wire called d

— which is exactly what a D-type flip-flop does.

We introduced a second version of the D-type flip-flop in Lab 24, which we called
dffe, or the D-type flip-flop with enable. In addition to inputs called clk and D,
the dffe has another input called enable, which tells the flip-flop whether or not to
update. When enable is HIGH, the dffe behaves just like a normal dff: the value
of D from just before the rising edge of the clock appears, just after the rising edge
of the clock, at the output Q. When enable is LOW, the Q output does not update
— it just keeps its present value, as if the clock edge had never occurred. Here is the
Verilog code for a dffe:

phys364/reading14.tex page 2 of 21 2014-12-01 10:45

1 // Verilog idiom for D-type flip-flop with enable

2 module dffe (output q, input clk, input d, input enable);

3 reg q_reg;

4 always @ (posedge clk) if (enable) q_reg <= d;

5 assign q = q_reg;

6 endmodule

An ordinary D-type flip-flop (a dff) updates its Q output after every rising edge, so
that Q just after the clock edge shows whatever value D had just before the clock edge
(as shown below).

By contrast, a D-type flip-flop with enable (a dffe) will ignore any rising edges of
the clock for which the enable input is LOW. It is as if the clock signal were disabled
during those times when the enable signal is LOW. For that reason, enable is some-
times called the “clock enable” input. The graph below shows example waveforms for
the inputs (D, clk, enable) and the output (Q) of a dffe. Except for the time when
enable is 0, the dffe behavior is exactly the same as for a dff.

As you saw in Lab 24, the dffe is useful for making a counter. Bit 0 toggles on every
positive edge of the clock. Bit 1 toggles only on those positive clock edges for which
bit 0 was HIGH just before the clock edge. Bit 2 toggles only on those clock edges
for which bits 0 and 1 were both HIGH just before the clock edge. And so on. This
type of counter works analogously to the odometer in a car: the 1’s digit is always
“enabled.” The 10’s digit is only enabled when the 1’s digit reads “9.” The 100’s
digit is only enabled when the bottom two digits read “99.” The 1000’s digit is only
enabled when the bottom three digits read “999,” and so on.

That allowed us, in Part 6 of Lab 24, to make an 8-bit counter like this:

1 // We need a wire to hold each flip-flop’s Q output

2 wire q7, q6, q5, q4, q3, q2, q1, q0;

phys364/reading14.tex page 3 of 21 2014-12-01 10:45

3 // each flipflop’s Q is inverted, then sent into its own D input

4 wire d7 = ~q7, d6 = ~q6, d5 = ~q5, d4 = ~q4;

5 wire d3 = ~q3, d2 = ~q2, d1 = ~q1, d0 = ~q0;

6 // Here is the tricky part: the first flip flop is always enabled.

7 // The second flip flop is only enabled if the first one is HIGH.

8 // The third flip flop is only enabled if the first two are HIGH.

9 // The fourth is only enabled if the first three are HIGH. Etc.

10 wire e0 = 1;

11 wire e1 = q0;

12 wire e2 = q0 & q1;

13 wire e3 = q0 & q1 & q2;

14 wire e4 = q0 & q1 & q2 & q3;

15 wire e5 = q0 & q1 & q2 & q3 & q4;

16 wire e6 = q0 & q1 & q2 & q3 & q4 & q5;

17 wire e7 = q0 & q1 & q2 & q3 & q4 & q5 & q6;

18 // Instantiate the 8 flip-flops

19 dffe mydff0 (q0, clock, d0, e0);

20 dffe mydff1 (q1, clock, d1, e1);

21 dffe mydff2 (q2, clock, d2, e2);

22 dffe mydff3 (q3, clock, d3, e3);

23 dffe mydff4 (q4, clock, d4, e4);

24 dffe mydff5 (q5, clock, d5, e5);

25 dffe mydff6 (q6, clock, d6, e6);

26 dffe mydff7 (q7, clock, d7, e7);

It is actually pretty ugly, in the above example, to have eight separate wires called
q0, q1, q2, . . ., q7, and so on. We learned last week that we can use Verilog vectors
to define groups of N wires. You can then (for example) manipulate an 8-bit-wide
vector of wires as if it were an 8-bit integer, as in this example (which is equivalent
to the above example).

1 // We need a wire to hold each flip-flop’s Q output

2 wire [7:0] q;

3 // Instantiate the 8 flip-flops. Flip-flop n is enabled only if

4 // the Q outputs of flip-flops n-1..0 are all HIGH. The D input of

5 // each dffe is connected to the NOT of the flip-flop’s own Q output.

6 dffe mydff0 (q[0], clock, ~q[0], 1);

7 dffe mydff1 (q[1], clock, ~q[1], q[0]);

8 dffe mydff2 (q[2], clock, ~q[2], q[1:0]==3);

9 dffe mydff3 (q[3], clock, ~q[3], q[2:0]==7);

10 dffe mydff4 (q[4], clock, ~q[4], q[3:0]==15);

11 dffe mydff5 (q[5], clock, ~q[5], q[4:0]==31);

12 dffe mydff6 (q[6], clock, ~q[6], q[5:0]==63);

13 dffe mydff7 (q[7], clock, ~q[7], q[6:0]==127);

By the way, the above example would probably be more clear to the reader if we
used binary numbers instead of decimal numbers to represent 3 = 112, 7 = 1112,

phys364/reading14.tex page 4 of 21 2014-12-01 10:45

15 = 11112, etc. The way you represent a binary constant in Verilog is by prefixing
it with ’b as in this rewrite of the previous example:

1 // We need a wire to hold each flip-flop’s Q output

2 wire [7:0] q;

3 // Instantiate the 8 flip-flops. Flip-flop n is enabled only if

4 // the Q outputs of flip-flops n-1..0 are all HIGH. The D input of

5 // each dffe is connected to the NOT of the flip-flop’s own Q output.

6 dffe mydff0 (q[0], clock, ~q[0], 1);

7 dffe mydff1 (q[1], clock, ~q[1], q[0]);

8 dffe mydff2 (q[2], clock, ~q[2], q[1:0]==’b11);

9 dffe mydff3 (q[3], clock, ~q[3], q[2:0]==’b111);

10 dffe mydff4 (q[4], clock, ~q[4], q[3:0]==’b1111);

11 dffe mydff5 (q[5], clock, ~q[5], q[4:0]==’b11111);

12 dffe mydff6 (q[6], clock, ~q[6], q[5:0]==’b111111);

13 dffe mydff7 (q[7], clock, ~q[7], q[6:0]==’b1111111);

You can also use ’h to prefix hexadecimal constants, as in ’hff for 255 or ’hdeadbeef
for 3735928559.

There is one more very useful way in which we can generalize the D-type flip-flop: we
can make its D input and its Q output be more than a single bit wide. For example,
we can make an 8-bit-wide version of the dffe, like this:

1 module dffe_8bit (output [7:0] q, input clk, input [7:0] d, input enable);

2 reg [7:0] q_reg;

3 always @ (posedge clk) if (enable) q_reg[7:0] <= d[7:0];

4 assign q[7:0] = q_reg[7:0];

5 endmodule

Equivalently, we could have built up an 8-bit-wide dffe_8bit by instantiating eight
separate copies of the original dffe, like this:

1 module dffe_8bit (output [7:0] q, input clk, input [7:0] d, input enable);

2 dffe (q[0], clk, d[0], enable);

3 dffe (q[1], clk, d[1], enable);

4 dffe (q[2], clk, d[2], enable);

5 dffe (q[3], clk, d[3], enable);

6 dffe (q[4], clk, d[4], enable);

7 dffe (q[5], clk, d[5], enable);

8 dffe (q[6], clk, d[6], enable);

9 dffe (q[7], clk, d[7], enable);

10 endmodule

Using this 8-bit-wide flip-flop, we now have a very easy way to make an 8-bit-wide
counter. An 8-bit-wide adder (which Verilog is smart enough to figure out how to
make out of logic gates) takes the present value of q[7:0] and adds 1 to it. The result

phys364/reading14.tex page 5 of 21 2014-12-01 10:45

of this addition is wired into the d[7:0] inputs of the 8-bit-wide D-type flip-flop.
Each time the clock makes a LOW-to-HIGH transition, the 8-bit value represented
by flip-flop outputs q[7:0] is incremented by 1. So q[7:0] takes on successive values
000000002, 000000012, 000000102, 000000112, . . ., 111111112, and then wraps around
back to 000000002. In other words, it counts from 0 to 255, over and over again,
incrementing once per clock tick.

1 wire clk = FromSomeInputPin; // assume the clock is provided to us

2 wire enable = 1; // these flip-flops will always be enabled

3 wire [7:0] q; // each flip-flop has a Q output

4 wire [7:0] d = q + 1; // add 1 to Q and send it back to D

5 dffe_8bit myflipflop (q[7:0], clk, d[7:0], enable);

At the end of last week’s reading, we discussed a component called a digital multi-
plexer, which is sometimes abbreviated “mux.” The schematic symbol for a multi-
plexer usually looks like the left figure below. There are three inputs, called A, B,
and S, and there is one output. If S is LOW, then the output shows the value of
input A; if S is HIGH, then the output shows the value of input B. So a multiplexer
selects between several possible inputs (just two possibilities in the simplest case),
sending a copy of the selected input to the output.

The above-right figure shows how a two-to-one multiplexer can be implemented using
ordinary logic gates. I remember being very surprised, when I first saw this circuit,
that it actually works as a multiplexer. To try to convince you that it really works,
I’ll show you the truth table below, which you can check by tracing through the
above-right schematic diagram.

Amazingly, as you can work through by comparing the truth table with the schematic
diagram, the circuit does indeed cause OUT to equal A when S is LOW, and it does
indeed cause OUT to equal B when S is HIGH.

phys364/reading14.tex page 6 of 21 2014-12-01 10:45

A B S A · S B · S OUT
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 1 0 1
1 1 0 1 0 1
0 0 1 0 0 0
0 1 1 0 1 1
1 0 1 0 0 0
1 1 1 0 1 1

We have several different ways we could write Verilog code corresponding to this
multiplexer. The most direct way would be to mimic the schematic diagram precisely:

1 module mux2to1 (input S, A, B, output OUT);

2 wire notS, AandnotS, BandS;

3 not (notS, S);

4 and (AandnotS, A, notS);

5 and (BandS, B, S);

6 or (OUT, AandnotS, BandS);

7 endmodule

Alternatively, we could use Verilog’s C-like binary operators, in place of the built-in
and, or, and not logic gates:

1 module mux2to1 (input S, A, B, output OUT);

2 wire notS, AandnotS, BandS;

3 assign notS = ~S;

4 assign AandnotS = A & notS;

5 assign BandS = B & S;

6 assign OUT = AandnotS | BandS;

7 endmodule

As we showed in last week’s reading, the wire statement creates a new wire, while
the assign statement connects an existing wire. To make things more concise, we
can create a new wire and connect it in the same statement, like this:

1 module mux2to1 (input S, A, B, output OUT);

2 wire notS = ~S;

3 wire AandnotS = A & notS;

4 wire BandS = B & S;

5 assign OUT = AandnotS | BandS;

6 endmodule;

Finally, we can eliminate the internal wires by combing several Verilog operators in
a single expression, like this:

1 module mux2to1 (input S, A, B, output OUT);

phys364/reading14.tex page 7 of 21 2014-12-01 10:45

2 assign OUT = (A & ~S) | (B & S);

3 endmodule;

We mentioned in last week’s reading that Verilog, like C and Java, has a so-called
ternary operator, ?:, which is analogous to a multiplexer. It is used in statements
like assign OUT = S ? B : A; If the first expression (S) is true, the ternary
operator evaluates to the second expression (B); otherwise, it evaluates to the third
expression (A). We can use this strange-looking ternary operator as yet another way
to implement our multiplexer in Verilog, as follows:

1 module mux2to1 (input S, A, B, output OUT);

2 assign OUT = S ? B : A;

3 endmodule;

As we did with flip-flops, we can generalize the multiplexer so that instead of selecting
between two single wires A and B, we can select between two vectors, for example the
four-bit-wide vectors A[3:0] and B[3:0]. We can do that in Verilog like this:

1 module mux2to1_4bit (

2 input S,

3 input [3:0] A,

4 input [3:0] B,

5 output [3:0] OUT

6);

7 assign OUT[3:0] = S ? B[3:0] : A[3:0];

8 endmodule;

If you want to generalize the multiplexer to be N bits wide, so that there is no need
to define separate modules for 4-bit-wide values, 8-bit-wide values, etc., you can use
a parameter, as in this example. In this case, we give the parameter N a default
value of 1.

1 module mux2to1_Nbit #(parameter N=1)

2 (

3 input S,

4 input [N-1:0] A,

5 input [N-1:0] B,

6 output [N-1:0] OUT

7);

8 assign OUT[N-1:0] = S ? B[N-1:0] : A[N-1:0];

9 endmodule;

To instantiate this module (within some other module whose details we omit), we use
the following syntax. In this case, we are using N = 4.

1 wire [3:0] inputA, inputB, muxout;

2 mux2to1_Nbit #(4) mymux (S, inputA, inputB, muxout);

phys364/reading14.tex page 8 of 21 2014-12-01 10:45

We will find parameters especially handy for defining N -bit-wide flip-flops, like this:

1 module dffe_Nbit #(parameter N=1)

2 (

3 output [N-1:0] q,

4 input clk,

5 input [N-1:0] d,

6 input enable

7);

8 reg [N-1:0] q_reg;

9 always @ (posedge clk) if (enable) q_reg <= d;

10 assign q = q_reg;

11 endmodule

You might have noticed, while reading through these Verilog examples, that I have
not always been perfectly consistent about whether a module’s inputs are listed before
or after the module’s outputs. In general, it can be difficult to keep track of the order
in which one has chosen to write the various inputs and outputs of a module. If
you write the arguments in one order when you define the module, and then you
accidentally write the arguments in a different order when you use the module, you
can create a “bug” (a mistake) that is very difficult to track down. Fortunately,
Verilog has a mechanism for avoiding these kinds of mistakes. It is possible (and
strongly encouraged) to specify module arguments by name rather than by position
when you instantiate a module. So instead of writing

1 wire [3:0] inputA, inputB, muxout;

2 mux2to1_Nbit #(4) mymux (S, inputA, inputB, muxout);

we can instead write

1 wire [3:0] inputA, inputB, muxout;

2 mux2to1_Nbit #(.N(4)) mymux (.S(S), .A(inputA), .B(inputB), .OUT(muxout));

This convention avoids completely the potential problem of writing the arguments in
the wrong order. If you use the arguments-by-name convention, you can use whatever
order you like. This example will work just as well as the previous example:

1 wire [3:0] inputA, inputB, muxout;

2 mux2to1_Nbit #(.N(4)) mymux (.OUT(muxout), .A(inputA), .B(inputB), .S(S));

But if instead you write
mux2to1_Nbit #(4) mymux (muxout, inputA, inputB, S);

when you meant to write
mux2to1_Nbit #(4) mymux (S, inputA, inputB, muxout);

you will definitely not get the results that you expect. So it is much safer (less
error-prone) to use the arguments-by-name convention. It is also much easier to read
Verilog code that uses the arguments-by-name convention, because you don’t need

phys364/reading14.tex page 9 of 21 2014-12-01 10:45

to keep looking back and forth between the module instantation and the module
definition to figure out the meanings of the first, second, third arguments, etc. It is
easier to remember the names than to remember what order you wrote them in.

Using this convention, we could rewrite our last example of an 8-bit counter like this:

1 module counter (input clk, output [7:0] q);

2 dffe ff0 (.clk(clk), .q(q[0]), .d(~q[0]), .enable(1));

3 dffe ff1 (.clk(clk), .q(q[1]), .d(~q[1]), .enable(q[0]==’h1));

4 dffe ff2 (.clk(clk), .q(q[2]), .d(~q[2]), .enable(q[1:0]==’h3));

5 dffe ff3 (.clk(clk), .q(q[3]), .d(~q[3]), .enable(q[2:0]==’h7));

6 dffe ff4 (.clk(clk), .q(q[4]), .d(~q[4]), .enable(q[3:0]==’hf));

7 dffe ff5 (.clk(clk), .q(q[5]), .d(~q[5]), .enable(q[4:0]==’h1f));

8 dffe ff6 (.clk(clk), .q(q[6]), .d(~q[6]), .enable(q[5:0]==’h3f));

9 dffe ff7 (.clk(clk), .q(q[7]), .d(~q[7]), .enable(q[6:0]==’h7f));

10 endmodule

But it is actually much simpler to write an 8-bit counter like this:

1 module counter (input clk, output [7:0] q);

2 dffe_Nbit #(.N(8)) myff (.clk(clk), .q(q), .d(q+1), .enable(1));

3 endmodule

More experienced Verilog coders would probably implement a counter as follows,
without using the separate dffe_Nbit module. But I have tried my best in these
examples to avoid using Verilog’s always blocks, except in the magic incantation for
creating a D-type flip-flop, to keep the amount of Verilog you need to learn down to
a minimum. So you may choose to close your eyes for this example:

1 module counter (input clk, output [7:0] q);

2 reg [7:0] q_reg;

3 always @ (posedge clk) q_reg <= q_reg + 1;

4 assign q = q_reg;

5 endmodule

We saw an example of an 8-bit-wide shift register in Lab 24.1 Here is an 8-bit-wide
shift register using dffe_Nbit:

1 module shiftreg (input clk, input d, output [7:0] q);

2 wire [7:0] ff_data;

3 assign ff_data[7:1] = q[6:0];

4 assign ff_data[0] = d;

5 dffe_Nbit #(.N(8)) ff (.clk(clk), .q(q), .ena(1), .d(ff_data));

6 endmodule

1https://en.wikipedia.org/wiki/Shift_register

phys364/reading14.tex page 10 of 21 2014-12-01 10:45

https://en.wikipedia.org/wiki/Shift_register

Using the concatenation operator (written using curly braces {}) that we first saw in
last week’s reading, you can save a few keystrokes:

1 module shiftreg (input clk, input d, output [7:0] q);

2 wire [7:0] ff_data = {q[6:0],d}

3 dffe_Nbit #(.N(8)) ff (.clk(clk), .q(q), .ena(1), .d(ff_data));

4 endmodule

You could eliminate the ff_data wires, too, if you like, as in the following example.
By the way, don’t let yourself be confused by the fact that shiftreg and dffe_Nbit

both have inputs and outputs named d and q.

1 module shiftreg (input clk, input d, output [7:0] q);

2 dffe_Nbit #(.N(8)) ff (.clk(clk), .q(q), .ena(1), .d({q[6:0],d}));

3 endmodule

One last bit of random Verilog minutia: Be sure to put the line
‘default_nettype none

near the top of each of your Verilog source files. The first character is a backquote,
which usually appears on the same keyboard key as the tilde (~) character. (You will
see this near the top of each of my Verilog files, unless I have left it out by accident.)
By default, Verilog will treat an undeclared identifier as if it were a (one-bit-wide)
wire. Thus, simply mistyping the name of a wire can lead to a very difficult-to-find
bug. If you include the above line at the top of your program, Verilog will complain
if you try to use a name that you have not declared. This is a good thing!

OK, that’s all the Verilog that we need to know in order to build up the rest of the
ideas in the course. One thing to emphasize is that every Verilog example that we
have introduced can in some way be reduced to an equivalent set of logic gates and
flip-flops. (And flip-flops can also be built up from logic gates.) So all of the Verilog
examples that we have studied are really just convenient ways of describing schematic
diagrams containing a large number of logic gates (AND, OR, NAND, XOR, etc.) and
their interconnections.

In earlier pages, we described multiplexers as digital circuits whose output is se-
lected from two possible inputs, A and B. Which of the two inputs is selected is
determined by a third input, S. We saw how to implement a multiplexer using
logic gates. The logic-gate implementation is equivalent to the Verilog statement

assign OUT = (IN0 & ~select) | (IN1 & select);

where I have changed the names A and B into IN0 and IN1, and I’ve changed the

name S to select. The symbol for this multiplexer is .

phys364/reading14.tex page 11 of 21 2014-12-01 10:45

Earlier, we generalized to the case in which A and B are N -bit vectors — which can
be done simply by instantiating N parallel copies of the single-bit multiplexer circuit.
Let’s instead generalize to the case in which S (or select) is an M -bit vector. For
example, if M = 8, I can select between 28 = 256 different inputs, and send my
choice of those 256 inputs to the output. I’ll draw the schematic symbol for such a
multiplexer in two different ways: one using eight separate select lines, and another
using an 8-bit-wide “bus” (called a “vector” in Verilog) of select lines. Usually the
latter notation is preferred, as it is easier to read.

There is a surpringly straightforward (but tedious!) way to implement this 256-to-1
multiplexer using logic gates. Here is a Verilog representation, whose translation into
logic gates is direct and should be easy to imagine. (I took some liberties with ellipsis
(. . .) to avoid typing out everything literally.)

1 module mux256to1 (input [7:0] S, input IN0, IN1, IN2, ..., IN255, output OUT);

2 assign OUT =

3 (!S[7] & !S[6] & !S[5] & !S[4] & !S[3] & !S[2] & !S[1] & !S[0] & IN0) |

4 (!S[7] & !S[6] & !S[5] & !S[4] & !S[3] & !S[2] & !S[1] & S[0] & IN1) |

5 (!S[7] & !S[6] & !S[5] & !S[4] & !S[3] & !S[2] & S[1] & !S[0] & IN2) |

6 (!S[7] & !S[6] & !S[5] & !S[4] & !S[3] & !S[2] & S[1] & S[0] & IN3) |

7

8 (S[7] & S[6] & S[5] & S[4] & S[3] & S[2] & S[1] & !S[0] & IN254) |

9 (S[7] & S[6] & S[5] & S[4] & S[3] & S[2] & S[1] & S[0] & IN255) ;

10 endmodule

Notice that mux256to1 is just a big pile of AND gates, OR gates, and inverters. It’s
something like 128 inverters, 256 nine-input AND gates, and one 256-input OR gate
— so you could build it with fewer than a thousand 74HC00 (quad two-input NAND
gate) chips. Notice also that simply by connecting all of the IN0. . .IN255 to a suitable
combination of 1 and 0 values, mux256to1 can implement an arbitrary 8-to-1 truth
table. It can map any desired pattern of 8 input bits into one output bit.

phys364/reading14.tex page 12 of 21 2014-12-01 10:45

An arbitrary truth table is sometimes called a lookup table. It turns out that a 4-to-
1 lookup table (usually paired with a D-type flip-flop) is the basic unit of a Xilinx
FPGA.2 So the building blocks of FPGAs are not really anything so mysterious.

Now let’s repeat mux256to1 sixteen times, so that each of the 256 input choices is not
a single bit but rather a 16-bit number. The schematic symbol for this even larger
multiplexer looks like this:

The corresponding Verilog code (again with some “. . .” abbreviations) is:

1 module mux256to1_16bit (

2 input [7:0] S,

3 input [15:0] IN0, IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8, IN9, IN10,

4 input [15:0] IN11, IN12, IN13, IN14, IN15, IN16, IN17, IN18, IN19, IN20,

5 ...

6 input [15:0] IN250, IN251, IN252, IN253, IN254, IN255,

7 output [15:0] OUT

8);

9 mux256to1(S, IN0[0], IN1[0], IN2[0],, IN254[0], IN255[0], OUT[0]);

10 mux256to1(S, IN0[1], IN1[1], IN2[1],, IN254[1], IN255[1], OUT[1]);

11 mux256to1(S, IN0[2], IN1[2], IN2[2],, IN254[2], IN255[2], OUT[2]);

12

13 mux256to1(S, IN0[14], IN1[14], IN2[14],, IN254[14], IN255[14], OUT[14]);

14 mux256to1(S, IN0[15], IN1[15], IN2[15],, IN254[15], IN255[15], OUT[15]);

15 endmodule

Now we have a device that can map an arbitrary 8-bit number into an arbitrary 16-
bit number, simply by arranging for all 4096 of the IN wires to be connected to the
desired pattern of 1 and 0 values. Such a device is known as a Read-Only Memory,
or a ROM. In this case, it would be called a 256 × 16 ROM.

A ROM is the simplest example of a memory. A memory can store useful informa-
tion. For instance, this ROM might store 16 bits of longitude and 16 bits of latitude of
each of 128 cities you would like to visit on future vacations. (16 bits per geographic
coordinate gives you about 0.6 km precision.) Or we could use this ROM to store,
for example, the squares of the integers 0 . . . 255, or a table of the first 256 prime

2https://en.wikipedia.org/wiki/Field-programmable_gate_array

phys364/reading14.tex page 13 of 21 2014-12-01 10:45

https://en.wikipedia.org/wiki/Field-programmable_gate_array

numbers i.e. mapping n to Prime[n] (in Mathematica notation).

So a ROM is just a big multiplexer, whose IN[] lines have been pre-wired to some
desired pattern.

Memories come in many shapes and sizes, though the number of data bits is most
commonly 8, 16, or 32, and the number of storage locations is always a power of two
— it’s 2n, where n is the number of address bits. In a memory, the OUT[15:0]

lines would really be called data lines D[15:0] (or in some cases Q[15:0]), and the
S[7:0] “select” lines would really be called address lines A[7:0].

While a ROM is a handy device, memory is far more useful if your circuit can write
to it as well as read from it.

A memory with which you can both read and write (i.e. you can both examine its
contents and modify its contents) is normally called a RAM (random access memory),
though technically the “random” in RAM refers not to read/write capability but
rather to the fact that you can access the addresses in any order you like. A magnetic
tape drive, by contrast, allows only sequential access. There is more discussion of
what the “random” really means in this context in the Wikipedia’s RAM article.3 By
the Wikipedia’s definition, a ROM is a special case of a random access memory, since
you can access its contents in any order. While this may be strictly true, nobody who
is trying to communicate clearly would ever refer to read-only memory as a RAM.

So for our purposes, a RAM is a memory that can be both read and written quickly at
arbitrary addresses in arbitrary order. The fastest and easiest-to-use RAM is called
static RAM, or SRAM. An SRAM uses one flip-flop to store each memory bit. (Often
the flip-flop in an SRAM is formed using two inverters instead of two NAND gates, to
use fewer transistors, but conceptually each memory cell is a flip-flop.) So a 256× 16
SRAM would use 4096 flip-flops. Here is a schematic drawing of a straightforward
implementation of a 256× 1 SRAM (i.e. 256 locations, each storing 1-bit-wide data).

3http://en.wikipedia.org/wiki/Random-access_memory

phys364/reading14.tex page 14 of 21 2014-12-01 10:45

http://en.wikipedia.org/wiki/Random-access_memory

Here is Verilog code equivalent to the above schematic diagram:

1 module sram256x1 (input clk, wen, D, input [7:0] A, output Q);

2 // Use address lines to demultiplex write-enable to 256 flip-flop enables

3 wire wen0 = wen && A==’b00000000;

4 wire wen1 = wen && A==’b00000001;

5 wire wen2 = wen && A==’b00000010;

6

7 wire wen254 = wen && A==’b11111110;

8 wire wen255 = wen && A==’b11111111;

9 // 256 D-type flip-flops store 1 bit for each of 256 locations

10 dffe ff0 (.clk(clk), .enable(wen0), .d(D), .q(Q0));

11 dffe ff1 (.clk(clk), .enable(wen1), .d(D), .q(Q1));

12

13 dffe ff255 (.clk(clk), .enable(wen255), .d(D), .q(Q255));

14 // Use address lines to multiplex 256 flip-flop outputs to data output Q

15 mux256to1 mux (.S(A), .IN0(Q0), .IN1(Q1), .IN2(Q2),,

16 .IN255(Q255), .OUT(Q));

17 endmodule

The “write enable” line, WEN, is normally 0. To read from the above SRAM, you
simply set the address lines A[7:0] to point to the desired memory location, and the
bit stored at that location appears at the Q output. To write to the SRAM (i.e. to
change its stored contents), you set A[7:0] to point to the memory location whose
contents you want to change, you set the WEN line to 1, and you set the D input to
whatever value (0 or 1) you want to store at location A. Then on the next rising

phys364/reading14.tex page 15 of 21 2014-12-01 10:45

edge of the clock, the contents of location A are replaced by D. Since updates only
happen on the rising edge of a clock, this is a synchronous SRAM. There are also
asynchronous SRAMs, just as there are asyncrhonous flip-flops, but the synchronous
type is much easier to use correctly.

(I used a demultiplexer above without ever telling you what one is. As described in
the Wikipedia,4 a demultiplexer takes one data input and n select[] inputs. It has
2n separate outputs, corresponding to the 2n possible values of select[n-1:0]. The
demultiplexer forwards the data input to the selected output and simply sends ’0’ to
all of the non-selected outputs. It does the opposite of what a multiplexer does.)

The circuit shown above is a 256 × 1
SRAM: it has 8 address lines and only
one data line. If we wanted a 256 × 16
SRAM (which would probably be much
more useful), we would replicate this cir-
cuit 16 times, as we did above to go from
the 256 × 1 ROM to the 256 × 16 ROM.
The resulting SRAM would store a 16-
bit-wide value at each of 28 = 256 loca-
tions. The symbol that one would use for
drawing such an SRAM on a schematic
diagram is shown to the right. The Ver-
ilog code to implement an 256×16 SRAM, by building it up out of 16 256×1 SRAMs,
is shown below.

1 module sram256x16 (

2 input clk,

3 input wen,

4 input [15:0] Din,

5 input [7:0] addr,

6 output [15:0] Dout

7);

8 sram256x1 ram0 (.clk(clk), .wen(wen), .D(Din[0]), .A(addr), .Q(Dout[0]);

9 sram256x1 ram0 (.clk(clk), .wen(wen), .D(Din[1]), .A(addr), .Q(Dout[1]);

10 sram256x1 ram0 (.clk(clk), .wen(wen), .D(Din[2]), .A(addr), .Q(Dout[2]);

11

12 sram256x1 ram14 (.clk(clk), .wen(wen), .D(Din[14]), .A(addr), .Q(Dout[14]);

13 sram256x1 ram15 (.clk(clk), .wen(wen), .D(Din[15]), .A(addr), .Q(Dout[15]);

14 endmodule

In most real-life SRAMs, a single data bus is used for both reads and writes. Having
separate read and write data-paths would waste I/O pins. (It would be like having
twice as many data lines to wire up on your breadboard.) But separate Din and Dout

(or sometimes D and Q, respectively) buses are easier to use and to understand. So
inside an FPGA, where there are no physical pins to worry about connecting, one

4https://en.wikipedia.org/wiki/Multiplexer#Digital_demultiplexers

phys364/reading14.tex page 16 of 21 2014-12-01 10:45

https://en.wikipedia.org/wiki/Multiplexer#Digital_demultiplexers

frequently uses separate buses for reading and writing a memory.

The RAM inside your computer — whose size is nowadays measured in gigabytes
— is not SRAM. It is synchronous DRAM (SDRAM). DRAM (dynamic RAM) uses
a capacitor instead of a flip-flop to hold the state of each stored bit. (Billions of
capacitors are cheaper and smaller than billions of flip-flops.) Since the capacitors’
charge slowly leaks away, the contents of DRAM must be refreshed several times per
second. In exchange for the hassle of refreshing, DRAM offers a large cost savings
over SRAM: SRAM requires typically six transistors per memory cell, while DRAM
requires one transistor and one capacitor per cell.

Finite State Machines

The figure to the right (figure 8.57 from
Horowitz & Hill, 2nd edition) shows a
generic sequential-logic circuit. (Sequen-
tial logic is logic that contains flip-flops.
The word “register,” used in the dia-
gram, is an alternative name for a flip-
flop.) A Finite State Machine (FSM)
is a special case of sequential circuit
in which one register is designated the
state number. The FSM moves from
state to state when specified conditions
are met. The next state is a (determinis-
tic) function of the present state and the
machine’s present input. The output is
a function of the present state.

FSMs are ubiquitous — and quite handy.
The two most common applications that
come to mind are validating (“parsing”)
input — e.g. for a vending machine —
and sequencing operations — e.g. for
a traffic signal. A state machine allows
you to do with a few D-type flip-flops
and some combinational logic the sorts
of things you may be accustomed to doing with a simple computer program. This
can be helpful if the circuit you are building needs to carry out a sequence of steps
to do its job.

A state diagram can be very helpful for describing an FSM’s intended behavior.
Here is a simple FSM for a traffic signal. (E/W means “east/west” and N/S means
“north/south.”)

phys364/reading14.tex page 17 of 21 2014-12-01 10:45

Now suppose we add a button for pedestrians to signal that they want to cross the
street. The state diagram becomes more complicated:

Here, shown below, is a state table. For each state number, it shows the state of each
of the seven outputs, and what the next state will be. In many cases, which state is

phys364/reading14.tex page 18 of 21 2014-12-01 10:45

next will depend on external inputs.

I will provide in Lab 26 a skeletal Verilog
implementation of the first traffic signal
FSM above — the simpler one. Part of
Lab 26 will be for you to flesh out the
missing details. If you have time, you
can implement a version that includes
the pedestrian signal.

Shown to the right is a state diagram
from Horowitz & Hill (figure 8.80) for
a vending machine. Inserting a nickel,
dime, or quarter is represented on the di-
agram as “n,” “d,” or “q.” In Lab 26, we
will work through an implementation of
this FSM. You might want to ask your-
self how you would modify this machine
to give back change (the correct amount)
if you overpay. Also, what sequence of
states would you jump through in order
to handle a transaction that has been
cancelled?

In the next (final) reading for the course, we will further explore the state-machine
concept, and we will introduce the concept of a microprocessor. A microprocessor
executes a sequence of instructions. Instructions have useful consequences, such as
moving data around, performing math operations, performing input/output to the
external world, etc. (This discussion will be repeated in much more detail next week.)

phys364/reading14.tex page 19 of 21 2014-12-01 10:45

A microprocessor’s instructions are stored in a memory. The program counter is
the memory address of the next instruction to be executed. The program counter
is one of several registers used by the microprocessor: an instruction register holds
the instruction currently being executed; various general-purpose registers may hold
temporary results of computations; sometimes there is an accumulator register that
plays a special role in math operations. The processor has access to read/write
memory for data storage. In the Von Neumann architecture (which is most common),
the program and its data are stored in the same memory. One occasionally sees the
alternative “Harvard architecture,” in which program memory and data memory are
totally separate.

Typically you write your program in C, C++, Java, the Arduino language, etc. A
compiler then translates your program into low-level instructions for the micropro-
cessor to execute. The microprocessor starts at the first address of your program,
fetches the instruction from that memory location, decodes the instruction, executes
the instruction, and then goes on to the next instruction.

The simple microprocessor we will discuss next week has this very minimal set of
instructions: LOAD, STORE, JUMP, JUMPZ (jump if zero), JUMPN (jump if negative), ADD,
SUB, MUL. We will see that this set of operations is sufficient for us to make a program
that calculates and displays on the BASYS2 board’s LEDs all prime numbers less
than 9999.

A microprocessor is basically a sophisticated Finite State Machine with an attached
memory and some means of exchanging data with the outside world. That’s why the
memory and the FSM are important ideas for us to study this week, in preparation

phys364/reading14.tex page 20 of 21 2014-12-01 10:45

for making that final step. Then we will have gone from transistor all the way to
(simplified) computer.

phys364/reading14.tex page 21 of 21 2014-12-01 10:45

