Physics 364, Fall 2014, reading due 2014-12-07.

Email your answers to ashmansk@hep.upenn.edu by 11pm on Sunday
Course materials and schedule are at positron.hep.upenn.edu/p364

Assignment: (a) First read this week’s notes, starting on the next page. (b) Then
email me your answers to the questions below.

1. What are the states in the music-machine (or player-piano) state machine described
in the notes, and (very briefly) what is the purpose of each state?

2. In the state diagram for the simplified computer described in the notes, what is
the role of the FETCH, DECODE, LOAD, STORE, ADD, and JUMP states?

3. In the simplified computer, why does the existence of the JUMPZ and JUMPN states
(and the corresponding opcodes) make the possible behavior of this machine so much
more interesting than if there were only JUMP (but not JUMPZ or JUMPN)?

4. Is there anything from this reading assignment that you found confusing and would
like me to try to clarify? If you didn’t find anything confusing, what topic did you
find most interesting?

5. If you're willing (an answer is not required), please share your thoughts on how
the course content could be improved for future years. Would you change the balance
between analog and digital? Are there topics on which we should spend less time,
more time, or topics to add or delete? Should the workload or time spent per week be
changed? Note that this question is only about course topics and structure. (How we
did as teachers is something you can review anonyously in your course evaluation.)

phys364 /reading15.tex page 1 of 22 2014-12-05 10:48

http://positron.hep.upenn.edu/p364

Administrative note: By popular vote, what we originally called the “take-home final
exam” will now instead be a “final homework assignment.” The main difference is
that it is OK, for this final homework assignment, if you want to discuss the questions
with other students. The work that you turn in must be your own, but if you want to
talk with people about how you approached a problem, that is acceptable. My goal
is that this final assignment will help you to review the course material so that the
key ideas will stick with you for the future. The assignment will be available online
by December 10 and will be due by the end of the term on December 19.

Last week, we introduced state machines and memories. In Lab 27, the last day of
class, we will explore two examples of state machines that are much more complicated
than the traffic signal and vending machine that we studied in Lab 26. But the key
ideas will be the same as in the simpler state machines.

The first state machine we will study in Lab 27 is a kind of player piano. It reads
from a memory a sequence of notes and durations, and plays these notes on a speaker,
in order to play a tune. For each note to be played, the memory contains a 16-bit
duration (in milliseconds) and a 16-bit half-period (in microseconds). One FPGA
output pin will be connected to a speaker. To play a given tone, the FPGA will
drive this output pin HIGH (+3.3 V) for one half-period, then LOW (0 V) for one
half-period, then HIGH for one half-period, then LOW for one half-period, and so on.
It continues to play this tone until the desired duration has elapsed. So to play the A
note (f =440 Hz, T = % = 2272.7 ps) above middle C for a duration of one second,
we would drive the output pin HIGH for 1136 us, then LOW for 1136 us, and so on,
until 1000 ms have elapsed.

To store the desired information, we will use a ROM (Read Only Memory). The size
and shape of this ROM will be the same as we studied in last week’s reading: 256 x 16,
i.e. 256 storage locations, each of which is 16 bits wide. That means that the input
to our ROM is 8 address lines, address[7:0], and the output of our ROM is 16 data
lines, dataout [15:0]. There are several ways to describe a ROM in Verilog. Here,
I will use a Verilog description that is a bit verbose, but has the advantage that it
maps directly onto last week’s discussion of a ROM as a special case of a multiplexer.
Here it is:

// 256x16 ROM, i.e. 256 storage locations, each of which is 16 bits wide;
// how exactly you get Verilog to infer a ROM, a RAM, etc. is somewhat
// idiomatic and depends on the FPGA vendor’s software (e.g. Xilinx);
// this is one acceptable way to tell Xilinx that you want a ROM
module rom256x16 (output [15:0] dataout,
input [7:0] address);

wire [7:0] A = address; // abbreviation to reduce typing

// white piano keys starting from middle C:

// note: C D E F G A B C

// £ (Hz) : 262 294 330 349 392 440 494 523

// T/2 (us): 1911 1703 1517 1432 1276 1136 1012 956

phys364 /reading15.tex page 2 of 22 2014-12-05 10:48

N

000w N N NN NN NN NN
S © o N o o A~ w 5

assign dataout =

// duration halfperiod

= 0 7 1000 : == 1 7 1517

== 2 7 1000 : == 3 7 1703

== 4 7 1000 : == 5 7 1911

= 6 7 1000 : == 7 7?7 1703

== 8 7?7 1000 : == 9 7?7 1517

== 10 ? 1000 : == 11 7 1517

== 12 7 1000 : == 13 ? 1517

== 14 7 1000 : == 15 7 1703

== 16 ? 1000 : == 17 ? 1703

== 18 ? 1000 : == 19 ? 1703

== 20 ? 1000 : == 21 7 1517

== 22 7 1000 : == 23 7 1276

== 24 7 1500 : == 25 7 1276 :

== 26 7 1000 : == 27 7 0 : // rest 1s
A==250 7 0 ==261 7 0
A==252 7 0 : ==263 7 0o :
A==254 7 0 ==255 7 0O : 0 ;

endmodule

The big assign statement is using the “ternary conditional operator” ?: to say,

if (address == 0) then

dataout will equal 1000 (decimal)
else if (address == 1) then

dataout will equal 1517 (decimal)
else if (address == 2) then

dataout will equal 1000
else if (address == 3) then

dataout will equal 1703

else if (address == 255) then
dataout will equal O

else (in case we missed any possibilities)
dataout will equal O

end if

After a moment’s thought, you can see that this is describing a multiplexer that
selects between 256 possible values. The repeated use of 7: is confusing at first. We
saw last week how to write

assign myvalue = (condition 7 first : second);

to multiplex between two possible values. We can extend this to multiplex between
four possible values, like this:

phys364 /reading15.tex page 3 of 22 2014-12-05 10:48

N

assign myvalue =
(A==0 ? (first)
(A==1 7 (second)
(A==2 ? third : fourth)));

If A =0 then myvalue gets the first possibility. If A # 0 then we need to consider
whether or not A = 1. If A =1 then myvalue gets the second possibility. If A # 1
then we need to consider whether or not A = 2. If A = 2 then myvalue gets the third
possibility; otherwise, myvalue gets the fourth possibility.

It turns out that we can remove all of the above parentheses and get the exact same
result, more neatly formatted:

assign myvalue = A==0 7 first
A==1 7 second :
A==2 ? third : fourth ;

This trick works in C, in Java, and in Verilog. We will use it many times in Lab 27.

Notice that I stored duration in even-numbered addresses and halfperiod in odd-
numbered addresses. So we will need to read from two successive addresses to play a
given note. Notice also (e.g. at A = 27) that I used the special case halfperiod==0
to represent a musical “rest,” i.e. to represent silence.

I use one more special case, which is trickier to understand. In the special case
duration==0, I use the corresponding halfperiod value to inducate the address
from which the machine should subsequently start reading. This allows me to do a
“GOTQO” operation, so that, for example, at the end of a tune, I can go back and
play the same tune again. It is worth taking a few minutes to understand the point
of this “GOTO” operation, because it is a key idea that will help you to understand
how a computer does its work: the idea is that I can store into the ROM a value
which is then used as a subsequent address into that same ROM. Whoa!

The diagram Shown below is my state diagram for the machine that will read this
ROM to play out a tune. I use a Verilog statement called “localparam” to assign
state names such as START, FETCHDURA, FETCHPITCH, etc., to the integer state numbers
0, 1, 2, etc.

// Enumerate the possible states of our state machine

localparam
START=0, // initial state: reset goes here
FETCHDURA=1, // fetch next note’s duration (unit=millisecond)
FETCHPITCH=2, // fetch next note’s half-period (unit=microsecond)

GOTO=3, // special case (duration==0): GOTO new memory address
WIGGLEO=4, // output bit is LOW for one-half period

WIGGLE1=5, // output bit is HIGH for one-half period

NOTEDONE=6, // finished playing a note

NOTEGAP=7; // pause briefly before moving on to next note

phys364 /reading15.tex page 4 of 22 2014-12-05 10:48

i
SEDT 2
q uﬁnﬁa/\

30+O 3;\&"\

y
/ \L e oddress

f ﬁ-(,\r\ “’ ¢ 280 s

; / el

3 . iy,

i N 0 T MU

£ (O (wge %,

R R N\

/nf hal€ EmmL e \ R

;’E \/ XP) e o (QS ol

| o T u
igle 1 \Qg\f‘r o v
K~’J{: ¢ @Jﬂ(dﬁE\}
“F valf e ey

iwel Repired

e —
et

A s o u-u.\—-.—w'q'\-. e, /

' % ?cmja L@ﬁi,&@ﬁ\ \JI\O‘LQJ
e Repired

Since there are 8 states, I use a 3-bit-wide D-type flip-flop to hold the current state
of the machine, which is called state. The logic to decide which state to enter on the
next clock cycle will manipulate the wires called nextstate. Notice that I used trick
introduced in last week’s reading to write a general-purpose N-bit flip-flop module.
When [instantiate it, I use (.N(3)) to indicate that the number of bits (N) should
be 3 in this instance. Another thing I am doing differently is connecting the top-
level wires to the module input/output wires by name instead of by position. Then
I can write the inputs/outputs in whatever order I wish, and Verilog will not get
confused about which top-level wires connect to which module inputs and outputs. It
also makes it more clear to the person reading the program which argument is doing

what.

phys364 /reading15.tex page 5 of 22 2014-12-05 10:48

> w N -

s W N -

Here is the instantiation of the 3-bit-wide D-type flip-flop that holds the present state
of the music machine:
// We’ll use a 3-bit D-type flip-flop to hold the state of the FSM

wire [2:0] state, nextstate;
dffe_Nbit #(.N(3)) mystatedff

(.q(state), // on each rising edge of the clock, the flip-flop
.d(nextstate), // copies ’nextstate’ (D) to ’state’ (Q)
.clock(clock), // clocked at 1 MHz
.enable(1), // always enabled
.reset(reset)); // reset to initial state by pushing button

Now, the really complicated part of this machine is the next-state logic. The nextstate
wires determine which state we will go into on the next clock cycle:

// Compute next state based on current state and pertinent conditions
assign nextstate =

(reset || stopthenoise) ? START : // go here if reset
(state==START || forcenewaddress) 7 FETCHDURA

(state==FETCHDURA) ? FETCHPITCH :

(state==FETCHPITCH && zeroduration) 7 GOTO : // dur==0 means GOTO
(state==FETCHPITCH) ? WIGGLEO

(state==G0OT0) ? FETCHDURA

(state==WIGGLEO && durationup) ? NOTEDONE : // end of this note?
(state==WIGGLEO && zeroperiod) ? WIGGLEO : // rest vs. tone
(state==WIGGLEO && wigglenow) 7 WIGGLE1 1 // wiggle up & down
(state==WIGGLEl && durationup) ? NOTEDONE

(state==WIGGLEl && wigglenow) ? WIGGLEO

(state==NOTEDONE) ? NOTEGAP

(state==NOTEGAP && notegapdone) 7?7 FETCHDURA : // pause betw. notes
/* default: stay in same state */ state ;

If you compare the above code snippet with the state diagram, you should see that
the code is expressing the same state transitions as the diagram.

o If we press the reset button (btn[0], the right-hand button), or if we slide the
stopthenoise switch (sw[0], the right-hand switch) upward, then the machine
goes to the START state. This is also where it starts when we first program the

FPGA.

e From the START state, the next state is always the FETCHDURA state (where we
fetch from ROM the duration of the next note)

— The FETCHDURA state goes to the next ROM address (which should be
an even-numbered address) and records the 16-bit “duration” (in millisec-
onds) of the next note to play.

— We will also go into the FETCHDURA state if the forcenewaddress button is
pressed (which is btn[1], the second button from the right). This button
allows the user (that’s you) to directly modify the machine’s address, so
that the machine subsequently starts playing music from that address.

phys364 /reading15.tex page 6 of 22 2014-12-05 10:48

e From the FETCHDURA state, the next state is always the FETCHPITCH state.

— The FETCHPITCH state goes to the next ROM address (which should be an
odd-numbered address) and records the 16-bit “halfperiod” (in microsec-
onds) of the next note to play.

e From the FETCHPITCH state, there are two possible next states:

— By far the most common transition is to go to the WIGGLEO state, which
is used along with WIGGLE1 to make the output bit oscillate (wiggle) back
and forth to make the desired musical tone.

— But in the special case in which the “duration” value is zero, we inter-
pret this to mean that the “halfperiod” value actually represents the next
memory address from which we should continue reading musical notes. In
that case, the next state will be the GOTO state, to handle this change of
address.

e If we happen to have wound up in the GOTO state, the next state from there
is always the FETCHDURA state, from which the process begins of fetching from
memory the next musical note to play.

— Again, the point of the GOTO state is to make the memory address jump
discontinuously to a new location. Normally the memory address just
increases by one step at a time, incrementing once to find a new duration
and then incrementing again to find a new pitch.

— We will look at the address-update logic in a moment.

e While a note is playing, we go back and forth between the WIGGLEO state and
the WIGGLE1 state.

— If we’re in WIGGLEO, the output bit (to the speaker) is LOW; if we're in
WIGGLEL, the output bit is HIGH.

— We reset a microsecond counter to zero before entering the WIGGLEO or
WIGGLE1 state. When the counter reaches the halfperiod value, we know
it is time to transition to the other state, so that the output pin goes back
and forth between LOW and HIGH at the correct oscillation period.

— Meanwhile, in the FETCHPITCH state, we reset a millisecond counter to
zero. If the number of milliseconds elapsed reaches the duration value,
we know it is time to transition to the NOTEDONE state, to finish up playing
this note and move on.

— There is one more special case: if halfperiod is zero, indicating that
we should play silence (a rest) rather than a note, then we just stay in
the WIGGLEO state instead of going back and forth between WIGGLEO and
WIGGLE1L.

e From the NOTEDONE state, we always go to the NOTEGAP state.

phys364 /reading15.tex page 7 of 22 2014-12-05 10:48

— The purpose of this state is to put a small (currently 25 milliseconds)
gap between notes, so that your ear can hear the difference between two
consecutive eighth-notes and a single quarter-note at the same pitch.

— I didn’t realize that I needed this state until I heard how terrible Mary
Had a Little Lamb sounded without it.

e If not otherwise specified, we just remain in the same state for the next clock
cycle.

Whew! That takes some effort to digest.

Next, the ROM connections. The memory address from which to read is stored in
an 8-bit D-type flip-flop. Notice that we again use the generalized dffe_Nbit with
#(.N(8)) to indicate an 8-bit-wide flip-flop.

// Use an 8-bit D-type flip-flop to hold the memory address
// from which the state machine is reading
wire [7:0] memory_addr, memory_nextaddr;
dffe_Nbit #(.N(8)) memaddrff
(.q(memory_addr),

.d(memory_nextaddr),

.clock(clock),

.enable(1), .reset(0));

Next, we instantiate the ROM: it needs to know its address (input) and where to
send its data (output)

// We will store the desired tune to be played in a ROM (Read-Only
// Memory) with 256 locations, each of which can store a 16-bit number;
// declare wires to store the ’dataout’ value from the memory, as well
// as the ’duration’ and ’halfperiod’ that will be copied (via flip-flops)
// from the ’memory_data’ wires
wire [15:0] memory_data, duration, halfperiod;
rom256x16 myroml
(.dataout (memory_data), // data comes out
.address (memory_addr)); // address goes in

Here is the logic to decide what ROM address to read from on the next clock cycle:

// Compute what memory address we will read from on next clock cycle
assign memory_nextaddr =

(btn[1]) ? sw[7:0] : // buttonl: goto switch address!
(state==START) ?0 : // start reading from zero
(state==FETCHDURA) 7 memory_addr+1l : // after reading duration or
(state==FETCHPITCH) 7 memory_addr+l : // pitch, increment address
(state==G0OTO) ? halfperiod : // special GOTO command

/* default: same */ memory_addr ; // otherwise stay unchanged

As a special case, if we hold down btn[1], the address is loaded from the sw[7:0]
sliding switches. On the START state, we start out at address zero. If we are in either

phys364 /reading15.tex page 8 of 22 2014-12-05 10:48

B W N e

N S

the FETCHDURA state or the FETCHPITCH state, we want to increment the address
by one so that the next read from the ROM will happen from the next memory
loacation after this one. If we are in the GOTO state, then the halfperiod value
(described below) contains the next address from which we should continue reading.

I said in last week’s reading that the “state register” may be one of several registers
(flip-flops) used in a state machine, but I didn’t elaborate. Here is an example.

We store the duration and the half-period for the current note in a pair of 16-bit-wide
flip-flops. The duration wires and the halfperiod wires connect the outputs of
these flip-flops, respectively. The duration flip-flop is only enabled in the FETCHDURA
state; and the halfperiod flip-flop is only enabled in the FETCHPITCH state. In both
cases, the D (data) inputs of the flip-flops are from the memory_data outputs of the
ROM. We're just writing down the value that we read from the ROM in either the
FETCHDURA or the FETCHPITCH state. The fact that memory_data (the ROM output)
is connected to the D inputs of these two flip-flops is a really important point — if
you don’t see why it is connected this way, please ask.
// Use a 16-bit D-type flip-flop to hold the desired duration (in ms)
// the note we are playing (or are about to play)
dffe_Nbit #(.N(16)) durationff
(.q(duration), // output goes to ’duration’ wires
.d(memory_data), // input data come from memory output data
.enable(state==FETCHDURA), // enabled only in the FETCHDURA state

.clock(clock), .reset(0));
assign zeroduration = (duration==0); // indicates special ’GOTO’ command

// Use a 16-bit D-type flip-flop to hold the half-period (in us)

// of the note we are playing (or are about to play)

dffe_Nbit #(.N(16)) halfperiodff
(.q(halfperiod), // output goes to ’halfperiod’ wires
.d(memory_data), // input data come from memory output data
.enable(state==FETCHPITCH), // enabled only in the FETCHPITCH state
.clock(clock), .reset(0));

assign zeroperiod = (halfperiod==0); // indicates rest (silence) vs. note

Counting microseconds and milliseconds. We will also have two 16-bit counters.
One of them increments once per microsecond. (This turns out to be easy to do,
because we will set up our master clock to run at 1 MHz.)

The second counter increments once per millisecond. But we still clock it with the
same 1 MHz clock. We use a once-per-millisecond pulse called pulse_1kHz to enable
the millisecond counter. We do this because we want all of the logic in our state
machine to be synchronous to a single clock.

// Use a 16-bit counter to count off microseconds until the next

// time the wire driving the speaker needs to wiggle up or down

wire [15:0] count_usec;
wire reset_usec;

phys364 /reading15.tex page 9 of 22 2014-12-05 10:48

16

17

19
20

21

SRR

counter_Nbit #(.N(16)) myuseccounter
(.q(count_usec),

.clock(clock), // clocked by 1 MHz clock

.enable(1), // always enabled

.reset(reset_usec)); // reset to zero when starting new half-period
// We start a new half-period immediately after FETCHPITCH or once
// the number of microseconds exceeds the desired half-period
assign reset_usec = (state==FETCHPITCH || wigglenow) ;
assign wigglenow = (count_usec==halfperiod);

// Use a 16-bit counter to count off milliseconds until the end
// of the note that we are playing (or are about to play)
wire [15:0] count_msec;

wire reset_msec = (state==FETCHPITCH || state==NOTEDONE) ;
counter_Nbit #(.N(16)) mymseccounter
(.q(count_msec), // elapsed millisecs (i.e. counter value)
.clock(clock), // counter operates from 1 MHz clock

.enable(pulse_1kHz), // enable only once per millisecond
.reset(reset_msec)); // reset when starting or ending a note
assign durationup = (count_msec==duration) ;
assign notegapdone = (count_msec==25); // 25 msec gap between notes

I will be finishing up the detailed writeup for Lab 27 over the weekend, so you can’t
yet see it in its final form. But I suggest that you quickly look through the Fall 2012
lab that covers this player-piano state machine, at this link:
http://positron.hep.upenn.edu/wja/p364/2012/1lab11f . html

The music machine is the first of two rather complicated state machines we will study
in Lab 27. The second one is even a bit more complicated than the music machine,
but it expresses the main point that we have been building up to in these past few
weeks — that you understand enough digital logic to be able to see how to build a
computer out of building blocks that you understand down to the transistor level.

The main goal of this second part of Lab 27 is go to a step beyond the music ma-
chine, to see that the microprocessor at the heart of your Arduino, iPhone, notebook
computer, etc. is really just a fancy state machine connected to a large memory.

Here (shown below) is the state diagram that I quickly flashed at the end of last

week’s reading (with minor modifications). This state diagram actually implements
a tiny computer!

phys364 /reading15.tex page 10 of 22 2014-12-05 10:48

http://positron.hep.upenn.edu/wja/p364/2012/lab11f.html

Before we look in detail at the implementation of this state machine, please read (the
text and figures, not so much the code) the short textbook chapter linked below,
which describes the design of the tiny computer on which the above state diagram is
based. I will show you in detail my own implementation of the same computer (with
minor modifications). Unlike the textbook’s version, my implementation uses only
the subset of Verilog that we have learned in this course. (So the many always blocks
that appear in the textbook code won’t be needed in our version.)

http://positron.hep.upenn.edu/wja/p364/2014/files/readinglb5_supplement.pdf

The state diagram above is basically the same one as in the textbook chapter, except
that I created several additional instructions:

e JUMPZ : jump (“goto”) if AC==
JUMPN : jump if AC<O

e SUB : subtract memory contents from accumulator (AC)
e MUL : multiply accumulator contents by memory contents
e QUT : display accumulator on 7-segment LED display

phys364 /reading15.tex page 11 of 22 2014-12-05 10:48

http://positron.hep.upenn.edu/wja/p364/2014/files/reading15_supplement.pdf

Here is what this list of states (i.e. the association from word-like names to integer

state numbers) looks like in Verilog:

// Enumerate the possible states of CPU’s state machine

localparam
RESET
FETCH
DECODE =
LOAD
STORE
STORE2
JUMP
JUMPZ
JUMPN

ADD
SUB
MUL
ouT

0,
1,
2,
3,
4,
5,
6,
7,
8,
9

B

10,
=11,
12;

//
//
//
//
//
//
//
//
//
//
!/
//
//

initial state: reset goes here
fetch next instruction from memory
decode instruction: what are my orders?!

execute
execute

store
execute
execute
execute
execute
execute
execute
execute

gets an

AC

:= memory [argument]

memory [argument] := AC

PC :

if
if

AC :
AC :
AC :

AC *

display AC

extra clock cycle for write to finish
argument

(AC==0) PC := argument

(AC<0) PC := argument

AC +

memory [argument]
memory [argument]
memory [argument]
on 7-segment LEDs

Since there are 13 states (more than 8 but fewer than 16), we use a 4-bit-wide D-type
flip-flop to hold the current value of the CPU state:

// Use a 4-bit D-type flip-flop to hold the state of the CPU’s FSM

dffe_Nbit #(.N(4))

state_ff (.q(state), .d(state_next),
.reset(reset));

.clock(clock),

.enable(run),

and here is the next-state logic to set up the transitions from state to state:

// Compute next state based on current state and pertinent conditions
assign state_next
? RESET
? DECODE
state==DECODE ? (IR[15:8

reset
state==FETCH

IR[15:8]==

IR[15:8

IR[15:8]

IR[15:8

IR[15:8]

IR[15:8

IR[15:8]

IR[15:8

state==STORE 7 STORE2
/* default */ FETCH

NN N N N N N N N

LOAD
STORE
JUMP
JUMPZ
JUMPN
ADD
SUB
MUL
ouT

FETCH)

//
//
//
//
//

//
//
//

reset line => RESET

FETCH => DECODE

DECODE => execute decoded
instruction (LOAD, STORE,
JUMP, etc.)

unknown => FETCH
STORE => STORE2
default => FETCH

As the textbook chapter described, the CPU points its “Program Counter” (PC) at
the next address in memory, FETCHes the instruction from memory[PC], and then
DECODESs it to figure out what to do next. The upper 8 bits of the instruction contain
the “opcode,” i.e. they determine whether the instruction is a LOAD operation, a
STORE operation, an ADD operation, etc. The lower 8 bits of the instruction are the
“argument” for the operation, and generally refer to a memory address.

phys364 /reading15.tex

page 12 of 22

2014-12-05 10:48

AW N e

6

AW N e

This CPU uses a read/write memory, a.k.a. a Random Access Memory (RAM) both
to store instructions that it will execute and to store the intermediate results of its
calculations. The module that defines the RAM begins like this:

// 256x16 RAM, i.e. 256 storage locations, each of which is 16 bits wide
module ram256x16 (

input clock, // clock (pertinent for writes only)

input writeenable, // write-enable

input [7:0] address, // address at which to read/write

input [15:0] datain, // data to store next clock (if write-enabled)
output [15:0] dataout // current memory contents at address A

)

The other details of this ram256x16 module are not worth studying, except to note
that the initial (“power-up”) contents of the memory, when the FPGA is first con-
figured by the ADEPT software, are read from a file called asm.hex.! In case you're
curious, here’s the rest of the ram256x16 module:

reg [15:0] memory [255:0];
always @ (posedge clock) begin
if (writeenable) memory[address] <= datain;
end
assign dataout = memory[address];
// power-up memory contents come from text file ’asm.hex’
initial $readmemh("asm.hex", memory);
endmodule

We'll see in a moment how to make sense of the data stored in the RAM. To connect
this memory to our CPU state machine, we need to connect the 8-bit memory_addr
lines, the 16-bit memory_datain lines, the single memory_write line (which is HIGH
only when we want to update the value stored in the memory at the current address),
and the 16-bit memory_dataout lines. The first three of these are outputs of the CPU
state machine (they are inputs to the memory), so they are connected like this:

// This CPU uses a RAM consisting of 256 16-bit words. In the

// FETCH state, the memory address is the Program Counter, so that

// we can fetch the next instruction. Otherwise, the memory

// address is the "argument" of the decoded instruction, i.e. the

// low 8 bits of the IR.
assign memory_addr = (state==FETCH) 7 PC : IR[7:0];

// The memory is only written in the STORE state; the data written
// to the memory always come from the accumulator (AC).

assign memory_write = (state==STORE);

assign memory_datain = AC;

The memory_dataout lines are an input to the CPU (they are an output of the
memory); we will see below how they are used.

http://positron.hep.upenn.edu/wja/p364/2012/asm.hex

phys364 /reading15.tex page 13 of 22 2014-12-05 10:48

http://positron.hep.upenn.edu/wja/p364/2012/asm.hex

The accumulator is the register that does nearly all of the CPU’s work. It is stored
in a 16-bit-wide D-type flip-flop. Here is the Verilog code that instantiates the flip-flop
and connects it:

// Accumulator (AC) is this CPU’s primary register; all math
// instructions operate on the accumulator.

//

// Acccumulator next-value logic:
// ADD => AC := AC + memory
// SUB => AC := AC - memory
// MUL => AC := AC * memory

// LOAD => AC := memory

// RESET => AC :=0

//

// Note that the multiply happens in a single clock cycle, so it
// will compile to an entirely combinational multiplier -- the

// one you would write down using an adder and a multiplexer for
// each bit of the multiplicand.
dffe_Nbit #(.N(16)) AC_ff (.q(AC), .d(AC_next), .clock(clock),
.enable(AC_enable), .reset(reset));
assign AC_next = (state==ADD) 7?7 AC + memory_dataout
(state==SUB) 7 AC - memory_dataout :
(state==MUL) 7 AC * memory_dataout :

(state==L0AD) 7 memory_dataout : 0;
assign AC_enable = run &&
(state==ADD ||
state==SUB ||
state==MUL ||
state==L0OAD ||
state==RESET);

It is actually really neat (I think) to see how the contents of the accumulator are
transformed when the CPU is in the various states like LOAD, ADD, SUB, MUL.

The output register is how this little CPU communicates its results to the outside
world. When the OUT instruction is executed, the current contents of the accumulator
are copied to the OUT register, whose contents are always displayed on the 4-digit 7-
segment LED display.

On a real computer, a mechanism similar to this would be used to interface the
computer to a digital-to-analog converter, or to external devices like printers, network
interfaces, disk drives, etc. A real computer would also have an opcode like IN to
receive input from external devices like keyboards, mice, analog-to-digital converters,
disk drives, etc. Anyway, here is the Verilog code for the output register:

// The output register is this CPU’s way to report its results to

// the outside world. The only path to the ’out’ register is from

// the accumulator. The ’out’ register is only enabled while the

// OUT instruction is executing.

dffe_Nbit #(.N(16)) out_ff (.q(out), .d(AC), .clock(clock),
.enable (out_enable), .reset(reset));

phys364 /reading15.tex page 14 of 22 2014-12-05 10:48

AW N e

~

assign out_enable = (state==0UT) && run;

The Instruction Register (IR) holds the 16-bit instruction that is currently being
executed, as described in the textbook chapter. Here is the Verilog code for the IR:

// The Instruction Register (IR) holds the instruction that is

// currently being executed. The only path into the IR is from

// the memory; the IR is only enabled in the FETCH state, i.e.

// while fetching the next instruction from memory.

dffe_Nbit #(.N(16)) IR_ff (.q(IR), .d(memory_dataout), .clock(clock),

.enable(IR_enable), .reset(reset));
assign IR_enable = (state==FETCH) && run;

The Program Counter (PC) holds the memory address from which the next in-
struction will be read, the next time the CPU enters the FETCH state. Normally the
Program Counter just increases by one on each subsequent instruction, corresponding
to running a program that has no GOTOs, no loops, etc. But the JUMP, JUMPZ, and
JUMPN opcodes can overwrite the contents of the Program Counter, thus changing the
flow of the program.

The conditional jump instructions are the most interesting ones, as they are what
permit the computer to make decisions: it can e.g. (JUMPZ instruction) go to a differ-
ent address if the accumulator currently equals zero, or else continue along its current
path if the accumulator contents are non-zero. Similarly, we can check whether the
accumulator is negative (i.e. the highest bit is set), and jump or not jump accordingly.

It turns out that if you want to figure out whether B > A, you subtract B from A and
then see whether or not the result is negative. That is the usual way that computers
make comparisons of two numbers. Isn’t that clever of them? You can also figure out
if B = A by subtracting B from A and then testing to see whether the result is zero.

Here is the Verilog code for the Program Counter:

// The Program Counter (PC) holds the address from which the next
// instruction will be fetched. Here is the program counter
// update logic:

// RESET => PC :=0

// FETCH => PC := PC+1 (after fetching from PC, point to PC+1)
// JUMP => PC := low byte of IR

// JUMPZ => PC := low byte of IR if AC == 0, else unchanged

// JUMPN => PC := low byte of IR if AC < 0, else unchanged

dffe_Nbit #(.N(8)) PC_ff (.q(PC), .d(PC_next), .clock(clock),
.enable(PC_enable && run), .reset(reset));
assign PC_next = (state==RESET) 7 O :
(state==FETCH) ? PC+1 : IR[7:0] ;
assign PC_enable = run &&
((state==RESET) |
(state==FETCH) [
(state==JUMP) [l

phys364 /reading15.tex page 15 of 22 2014-12-05 10:48

(state==JUMPZ && AC==0) ||
(state==JUMPN && AC[15]1));

That’s basically all it takes to make a simplified computer. You can see that it’s just
a state machine connected to a memory, not so different from the music machine we
studied at the beginning of today’s reading. To make it easy for you to see all of the
computer’s inputs and outputs, I put the guts of the computer (a.k.a. CPU, Central
Processing Unit) into a module called simple_cpu. Here are the connections needed
from the top-level module:

// These wires connect to the inputs/outputs of the CPU module
wire [15:0] memory_dataout, memory_datain, IR, AC, out;

wire [7:0] PC, memory_addr;

wire [3:0] state;

wire memory_write;

// Determine when the CPU will run (do its normal thing) and when
// it will pause to wait for the user.
wire run = !sw[0];

// Button 1 will reset the CPU to its initial state.
// function
wire reset = btn[1];

// Instantiate the CPU and its memory
simple_cpu cpu (.clock(clock), .reset(reset), .run(run),
.PC(PC), .AC(AC), .IR(IR), .state(state),
.memory_dataout (memory_dataout), .memory_addr(memory_addr),
.memory_datain(memory_datain), .memory_write(memory_write),
.out(out));
ram256x16 ram (.clock(clock),
.writeenable (memory_write),
.address (memory_addr) ,
.datain(memory_datain),
.dataout (memory_dataout)) ;

// The green LEDs will display the Program Counter
assign led = PC;

// The T7-segment display will show the OUT register, i.e. the most
// recent prime number.
wire [15:0] leddat = out;

assign {digit3,digit2,digitl,digit0} = leddat;

Everything else in the top-level module (called labllg in the Fall 2012 materials,
but will be called 1ab27_part2 this year) is stuff that has been there since earlier
labs: the counter to make a 1 MHz clock from the on-board 50 MHz clock; the
display4digits module and its connections, to handle the ping-pong updating of
the 4 separate digits of the 7-segment display.

phys364 /reading15.tex page 16 of 22 2014-12-05 10:48

If you look at the complete Verilog program from Fall 2012 at this URL:
http://positron.hep.upenn.edu/wja/p364/2012/1labllg_part2.v
you will see that there is really not that much to it.

To prove to you that this computer is capable of doing a real computation, I coded
the stupidest imaginable algorithm for calculating all of the prime numbers from 2 to
9973. Here is how the algorithm would look if I were to write it in the C programming
language. Stare at it for long enough to convince yourself that it can indeed identify
prime numbers. (If you don’t know C, then just try to follow the comments instead

1
2
3
4

of the code.)

#include <stdio.h>

int main(void)

{

When I run the above program on my Mac, I see this output (boring parts suppressed):

phys364 /reading15.tex page 17 of 22 2014-12-05 10:48

int i, j, k, product;
// loop ’i’ over candidate prime numbers, from 2 to 9999
for (i = 2; i<10000; i = i+1) {
// loop ’j’ over possible first factors, from 2 to i-1
for (j = 2; j<i; j = j+1) {
// loop ’k’ over possible second factors, from j to i-1
for (k = j; k<i; k = k+1) {
product = jx*k;
// if jxk equals i, then i must not be prime: jump to ’iloop’
if (product==i) goto iloop;
// if jxk > i, then skip the rest of the k loop
if (product>i) break;
}
}
// if we reach this point, then i is prime: print it out
printf ("%d\n", i);
iloop:; // this label ’iloop’ allows the ’goto’ to jump here
}

return O;

http://positron.hep.upenn.edu/wja/p364/2012/lab11g_part2.v

22

9887
9901
9907
9923
9929
9931
9941
9949
9967
9973

Regrettably, we do not have a C compiler for our home-made computer. We have
to write our program directly in the computer’s assembly language, i.e. using the
opcodes LOAD, STORE, ADD, JUMP, etc. Here we go! (Note that everything to the right
of a ’#’ symbol is a comment.)

start:

iloop:

jloop:

#

prime.sasm

coded 2010-11-11 by Bill Ashmanskas, ashmansk@hep.upenn.edu

#

The purpose of this program is to demonstrate that the CPU

implemented in simple_cpu.v is capable of carrying out a

non-trivial computation.

#

This is probably the dumbest imaginable algorithm to compute

prime numbers. Its execution time scales as the third power

of the number of candidates to evaluate. For every candidate i,
loop over possible factors j and k, testing whether i==j*k. If
no such j and k are found, then display i on the LEDs.

#

Note that with storage for a mere 5000 boolean values (which

I could have easily cooked up), one can use a much more efficient
algorithm, the Sieve of Eratosthenes. It scales (with number of
candidate integers N) as Nxlog(N)*log(log(N)), while my algorithm
scales as N*x3. I point this out only so that you don’t think
that I think the N**3 algorithm is a good way to compute primes.
#

load istart #

store i # i := istart (nominally 1)

load i # loop i from istart+l to 9999

add one #

store i # i =i+l

load do999 #

sub i #

jumpn done # if (i>9999) goto done

load one #

store j # j:=1

load J # loop j from 2 to i-1

add one #

phys364 /reading15.tex page 18 of 22 2014-12-05 10:48

41

60

66

kloop:

jdone:

store j # j o= j+1

load i #

sub J #

jumpz jdone # if (j==i) goto jdone

load J #

sub one #

store k # k = j-1

load k # loop k from j to i-1

add one #

store k # k = k+1

sub i #

jumpz jloop # if (k==1i) goto jloop

load J #

mul k #

store prod # product := jxk

sub i # // if jxk==i then i is not prime

jumpz iloop # if (product==i) goto iloop // skip to next i

jumpn kloop # if (product<i) goto kloop // keep looping k
// k exceeds i/j, so skip to next j

jump jloop # goto jloop

#

If we reach here, then i is a prime number. The only purpose

of the code below is to convert i from binary into decimal so

that the LED display can be understood by human observers.

#

load zZero # Z’outnum’ will hold the binary-coded decimal result
store outnum # outnum := 0

(uninteresting stuff suppressed)

done:
disply:
out

prod:
outnum:
remain:
hdigit:
h1000:
h100:
hi10:
d10000:
d1000:
d100:
di10:
d9999:
istart:
Ndelay:

jump start # go back and start counting again from i==
load outnum # send most recent prime to the 7-segment display
#
jump iloop # @go back up to try next candidate i
.data O # store the constant ’0’
.data 1 # store the constant ’1’
.data O # store the loop variable ’i’ (prime number cand.)
.data O # store the loop variable ’j’
.data O # store the loop variable ’k’
.data O # store the loop variable ’1’
.data O # store the product ’prod’ = j*xk
.data 0 # compute/store binary-coded-decimal conversion of i
.data O # store remainder used in BCD computation
.data O # store hex value used to display one decimal digit
.data 1000 # store hexadecimal constant 0x1000
.data 100 # store hexadecimal constant 0x100
.data 10 # store hexadecimal constant 0x10
.data 2710 # store decimal constant 10000
.data 3e8 # store decimal constant 1000
.data 64 # store decimal constant 100
.data a # store decimal constant 10
.data 270f # store decimal constant 9999 (= 270f in hexadecimal)
.data 1 # starting value for i (i.e. first prime to check)
.data £000 # delay factor (in hexadecimal)

phys364 /reading15.tex page 19 of 22 2014-12-05 10:48

AW N e

NONN NN
TR W N e

=N

NN NN
o C

»

The part of the code that is shown above does the prime number calculation. The
whole program, including the parts that I omitted above, is at
http://positron.hep.upenn.edu/wja/p364/2012/prime.sasm

There are two parts that I didn’t show:

First, the conversion of the prime number from a 16-bit hexadecimal integer into four
decimal digits (thousands, hundreds, tens, ones). If I didn’t do this, then the prime
numbers would print out in hexadecimal, which would make the program seem less
convincing to a human observer.

Second, the brief delay before displaying each new prime number, so that the numbers
do not overwrite each other too quickly for you to see. The delay is implemented
simply as a loop: tell the computer to count to about 60000 as a way to waste time.

The program above is still in human-readable form. We need to convert the instruc-
tions into hexadecimal memory contents. Here is the output of that process, i.e. an
annotated file that is identical in content to asm.hex.? The annotated version is at
prime_assembled.txt.? The file looks like this (with boring parts suppressed):

mem[’h00] = ’h006b; // start: load istart

mem[’h01] = ’h015b; // store i
mem[’h02] = ’h005b; // iloop: load i
mem[’h03] = ’hO055a; // add one
mem[’h04] = ’h015b; // store i
mem[’h05] = ’h006a; // load d9999
mem[’h06] = *h065b; // sub i
mem[’h07] = ’h0455; // jumpn done
mem[’h08] = ’h005a; // load one
mem[’h09] = ’h015c; // store j
mem[’hO0a] = ’h005c; // jloop: load j
mem[’hOb] = ’hO55a; // add one
mem[’hOc] = ’h015c; // store j
mem[’h0d] = ’h005b; // load i
mem[’hOe] = ’h065c; // sub j
mem[’h0f] = ’h031f; // jumpz jdone
mem[’h10] = ’h005c; // load j
mem[’h11] = ’h065a; // sub one
mem[’h12] = ’h015d4; // store k
mem[’h13] = ’h005d; // kloop: load k
mem[’h14] = ’hO055a; // add one
mem[’h15] = ’h015d; // store k
mem[’h16] = *h065b; // sub i
mem[’h17] = ’h030a; // jumpz jloop
mem[’h18] = ’h005c; // load j
mem[’h19] = *h075d; // mul k
mem[’hla] = ’h015f; // store prod
mem[’h1b] = ’h065b; // sub i
mem[’hic] = ’h0302; // jumpz iloop

’http://positron.hep.upenn.edu/wja/P364_2012/asm.hex
3http://positron.hep.upenn.edu/wja/P364_2012/prime_assembled.txt

phys364 /reading15.tex page 20 of 22 2014-12-05 10:48

http://positron.hep.upenn.edu/wja/p364/2012/prime.sasm
http://positron.hep.upenn.edu/wja/P364_2012/asm.hex
http://positron.hep.upenn.edu/wja/P364_2012/prime_assembled.txt

mem[’h1d] = ’h0413; // jumpn kloop
mem[’hle] = ’h020a; // jump jloop
mem[’h1f] = ’h0059; // jdone: load zero
mem[’h20] = ’*h0160; // store outnum
mem[’h55] = ’h0200; // done: jump start
mem[’h56] = ’h0060; // disply: load outnum
mem[’h57] = ’h0800; // out
mem[’h58] = ’h0202; // jump iloop
mem[’h59] = ’h0000; // =zero: .data 0
mem[’h5a] = ’h0001; // one: .data 1
mem[’h5b] = ’h0000; // i: .data 0O
mem[’h5c] = ’h0000; // j: .data 0O
mem[’h5d] = ’h0000; // k: .data 0O
mem[’h5e] = ’h0000; // 1: .data 0
mem[’h5f] = *h0000; // prod: .data 0
mem[’h60] = ’h0000; // outnum: .data O
mem[’h61] = *h0000; // remain: .data O
mem[’h62] = ’h0000; // hdigit: .data O
mem[’h63] = ’h1000; // h1000: .data 1000
mem[’h64] = ’h0100; // hi100: .data 100
mem[’h65] = ’h0010; // hi0: .data 10
mem[’h66] = *h2710; // d10000: .data 2710
mem[’h67] = *h03e8; // d1000: .data 3e8
mem[’h68] = ’h0064; // di100: .data 64
mem[’h69] = >h000a; // di0: .data a
mem[’h6a] = ’h270f; // d9999: .data 270f
mem[’h6b] = ’h0001; // istart: .data 1
mem[’h6c] = ’hf000; // DNdelay: .data f000
mem[’h6d] = ’h0000;

mem[’h6e] = >h0000;

mem[’h6f] = >h0000;

mem[’h70] = ’h0000;

So the memory contents that cause the computer to calculate this big sequence of
prime numbers look like this: 006b 015b 005b 055a 015b 006a 065b 0455 005a 015¢
005¢ 055a 015¢ 005b 065¢ 031f 005¢ 065a 015d 005d 055a 015d 065b 030a 005¢ 075d
015f 065b 0302 0413 020a 0059 0160 005b 0161 0666 0426 0255 0059 0162 0061 0667
0430 0161 0062 0563 0162 0228 0062 0560 0160 0059 0162 0061 0668 043d 0161 0062
0564 0162 0235 0062 0560 0160 0059 0162 0061 0669 044a 0161 0062 0565 0162 0242
0062 0560 0561 0160 006¢ 015e 005e 065a 015e 0356 0250 0200 0060 0800 0202 0000
0001 0000 0000 0000 0000 0000 0000 0000 0000 1000 0100 0010 2710 03e8 0064 000a
270f 0001 f000 0000 0000 ... (more zeros)

There’s not much to it! It’s shorter than the player piano’s musical score.
Just in case you're eager to know how I managed to convert the first (“assembly”)

format into the second (“machine” / hexadecimal) format, here is the Python program
that I wrote to do the conversion:

phys364 /reading15.tex page 21 of 22 2014-12-05 10:48

http://positron.hep.upenn.edu/wja/P364_2012/sasm.py.txt

Such a program is called an assembler, because it converts human-readable assem-
bly language into hexadecimal (or binary) machine code.

In Lab 27, we will look again through the implementation of this CPU, and you will
have a chance to tinker with it a bit on your BASYS2 board. If you're interested in
a preview, you can see how this worked out in the Fall 2012 lab at this link:
http://positron.hep.upenn.edu/wja/p364/2012/1labllg.html

This reading was probably somewhat exhausting to get through! And it touched
on several topics that may be completely unfamiliar to you if you have not formally
studied Computer Science. But I hope that I succeeded, nevertheless, at convincing
you that a computer is really just a (somewhat complicated) state machine with some
attached memory. And I hope that you were already convinced that a state machine
and a memory are things that can be built up from logic gates and flip-flops, and
that these, in turn, are things that we know how to build up from transistors. This
conceptual reduction of the computer to transistor-level circuit components is the
capstone of the digital portion (the last) of this course.

phys364 /reading15.tex page 22 of 22 2014-12-05 10:48

http://positron.hep.upenn.edu/wja/P364_2012/sasm.py.txt
http://positron.hep.upenn.edu/wja/p364/2012/lab11g.html

